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Abstract: The evaluation of geometric accuracy of high-resolution satellite images (HRSIs) has been
increasingly recognized in recent years. The traditional approach is to verify each satellite individually.
It is difficult to directly compare the difference in their accuracy. In order to evaluate geometric accuracy
for multiple satellite images based on the same ground control benchmark, a reliable test field in Xianning
(China) was utilized for geometric accuracy validation of HRSIs. Our research team has obtained multiple
HRSIs in the Xianning test field, such as SPOT-6, Pleaides, ALOS, ZY-3 and TH-1. In addition, ground
control points (GCPs) were acquired with GPS by field surveying, which were used to select the significant
feature area on the images. We assess the orientation accuracy of the HRSIs with the single image and
stereo models. Within this study, the geometrical performance of multiple HRSIs was analyzed in detail,
and the results of orientation are shown and discussed. As a result, it is feasible and necessary to establish
such a geometric verification field to evaluate the geometric quality of multiple HRSIs.

Keywords: high resolution satellite images; test field; geometrical performance; evaluation; accuracy

1. Introduction

During the last decade, with the improvement of the resolution of HRSIs (Table 1),
whose geometric positioning capabilities have also been gradually enhanced, the use of satellite
images to produce large-scale topographic maps has become possible. Due to the distinctive feature
of high-precision positioning of HRSIs, as well as the stringent requirements of high accuracy and
high reliability in mapping, establishing a high stability and long-term continuous-operation scientific
testing base for remote sensing and mapping will have significance and practical value.

Table 1. High-resolution optical satellite system. PAN: panchromatic, MS: multispectral, SWIR:
Shortwave infrared.

Satellite Nation Launch Date Bands Spatial Resolution/m Width/km
IKONOS America 24 September 1999 PAN/MS 1/4 11
QuickBird America 18 October 2001 PAN/MS 0.61/2.44 16.5
SPOT-5 France 4 May 2002 PAN/MS/SWIR 2.5/10/20 60
SPOT-6 France 9 September 2012 PAN/MS 1.5/6.0 60
CBERS-02B China 21 October 2003 PAN/MS 2.36/20 27
Cartosat-1 India 5 May 2005 PAN 2.5 (forward), 2.2 (backward) 26
ALOS Japan 24 January 2006 PAN/MS 2.5/10 35/70
Sensors 2018, 18, 2121; d0i:10.3390/s18072121 www.mdpi.com/journal/sensors

363


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3987-5336
http://www.mdpi.com/1424-8220/18/7/2121?type=check_update&version=1
http://dx.doi.org/10.3390/s18072121
http://www.mdpi.com/journal/sensors

Sensors 2018, 18,2121 20of 11

Table 1. Cont.

Satellite Nation Launch Date Bands Spatial Resolution/m Width/km
EROS-B Israel 25 April 2006 PAN 0.7 14
Cartosat-2 India 10 January 2007 PAN <1 10
WorldView-1 America 18 September 2007 PAN 0.5 17.6
GeoEye-1 America 6 September 2008 PAN/MS 0.41/1.65 15.2
WorldView-2 America 8 October 2009 PAN/MS 0.46/1.84 16.4
WorldView-3 America 13 August 2014 PAN/MS/SWIR 0.31/1.24 13.2
. 2.1 (nadir)/3.5 (forward,
ZY3 China 9 January 2012 PAN/MS backward),/5.8 52
. 2 (HR)/5 (forward,
TH-1 China 24 August 2010 PAN/MS backward, nadir)/10 60
Pléiades France 17 December 2011 PAN/MS 0.5/2.0 20

Many research institutions, as well as experts and scholars, have done a lot of investigation and
research work for the geometric calibration and validation of sensors. The Modular Optoelectronic
Multispectral Scanner (MOMS-2P) was developed by DLR (Deutsches Zentrum fiir Luft- und
Raumfahrt). The DLR updated the calibration data combined with photogrammetric bundle
adjustment using an adapted functional model for the reconstruction of the interior orientation.
In addition, it also compares the results of geometric laboratory calibration. The calibration field
is located in the southern part of Germany and Austria [1,2]. Fraser et al. use different model
to process the IKONOS images. The results can yield 3D object-point determination with an
accuracy of 0.5 m in plane and 0.7 m in height. The GCPs are collected at road roundabouts or
other distinct features conducive to high-precision measurement in both the imagery and on the
ground [3]. Tadono et al. describe the updated plans for sensor calibration and product validation
of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), which is to fly on
the Advanced Land Observing Satellite (ALOS). They not only evaluate the geometric accuracy of
PRISM data, but also validate the derived DEM [4]. The Finnish Geodetic Institute has maintained a
permanent test field for geometric, radiometric, and spatial resolution calibration and the testing of
high-resolution airborne and satellite imaging systems in Sjokulla since 1994. The experience of nearly
10 years has shown that the use of gravel, combined with appropriate markers as the control objectives
of the test field, can effectively eliminate the effects of seasonal and weather changes. It is also durable
and able to guarantee the stability and consistency of the test field [5]. Meguro and Fraser evaluated
a stereo pair of pansharpened GeoEye-1 Basic images covering the Tsukuba Test Field in Japan,
which contains more than 100 precisely surveyed and image-identifiable GCPs. They indicated that the
direct georeferencing accuracy is 2 m (CE90, the circular error of above 90% points) in plane and 3 m
(LE90, the line error of above 90% points) in height. The use of a few GCPs improved the geopositioning
accuracy to around 0.35 m (0.7 pixel) in plane and 0.7 m (1.4 pixel) in height [6]. John Dolloff, et al. use
the Metric Information Network (MIN) method to process all 50 WorldView-1 stereo pairs. Statistics
based on 101 ICPs (Independent Check Points) show that the positioning result is 0.5 m in plane
and 0.3 m in height [7]. G. Agugiaro et al. evaluated the accuracy of GeoEye-1 and WorldView-2 by
control and check data of the Trento test field in Italy. Also, 3D information extraction of the images
was mentioned. For reference and validation, a DSM (Digital Surface Model) from airborne LiDAR
acquisition is used as a comparison [8]. H. Topan and D. Maktav validated that different variations
of point distribution and EOP configuration were preferred, achieving georeferencing accuracies of
~%1 m and ~+5 m at control and check points, respectively [9]. Wang et al. validated that ZY-3 can
be used for the generation of cartographic maps at the 1:50,000 scale and for revision and updates
of 1:25,000 scale maps [10-14]. By detecting and eliminating various kinds of geometric processing
error, including equipment installation error, attitude and orbit measurement error, camera distortion,
time synchronization errors and other errors, Li et al. found that the geometric orientation accuracy
of Chinese satellite images could be improved to be better than 1.5 pixel, which is higher than the
designed accuracy [15]. Tian et al. showed that more accurate and reliable assessment results can be
obtained by choosing the appropriate evaluation method of geometric positioning accuracy [16].
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Worldwide, scholars have done a lot of geometric accuracy verification work with multiple types of
HRSIs. In previous research processes, the evaluation area and evaluation method of each satellite are
different. The geometric positioning accuracy of each satellite could only be compared by related reports
and papers. A unified test field is hoped to be established and a unified evaluation method is used to
evaluate the geometric positioning accuracy of different satellites. The Xianning test field can meet this
demand. Data collection, processing, and evaluation processes will become standardized with the Xianning
test field, and the accuracy of the evaluation results can be compared more simply and intuitively.

Moreover, the designers of the test field will generally consider satellite geometry calibration and
validation work in the same field. The internal and external orientation parameters of the satellite
will be updated by the calibration. However, it requires a time lag after calibration in order to ensure
the reliability of the accuracy. Therefore, a special validation test field is necessary only for accuracy
evaluation using the ICPs (Independent Check Points) in the test field. In addition, this validation
test field is different from the calibration test field. The main purpose of the validation test field is to
verify the geopositioning accuracy and object recognition capabilities of the standard HRSI, and also
to provide a reference for the direct application of the HRSI. The Xianning test field is such a test field
for accuracy validation of HRSI or other remote sensing data.

2. Test Field Area and Data Sources

2.1. The Test Field

The test area is located in Xianning, a city of about 2,880,000 inhabitants in the south of Hubei
province, central of China. The test field is situated in plain and hilly topography and the elevation
ranges from 20 m to 400 m. This topographic feature is representative of flat and hilly land in China.
The test field varies from urban areas with residential, industrial and commercial buildings at different
sizes and heights, to agricultural or forested areas, and steep rocky surfaces, therefore offering a
heterogeneous landscape in terms of geometrical complexity, land use and cover. Also, it needs
convenient transportation and to be away from crowded areas in order to ensure that no deformation
of the surface features will take place over time.

The area with the GCPs in the test field should contain at least two standard scenes to be able
to make the most of the width of whole satellite images within the scope of the test field. Therefore,
it is believed that the width of test field should be about 120 km (based on the value of double the
current maximum width of the HRSIs in Table 1). A length of the test field of about 100 km along the
track direction would be most appropriate; also double the standard length of one HRSI. Currently,
the Xianning test field can meet the requirements of the width and length of most mainstream HRSIs.
Thumbnail of multiple HRSIs coverage is shown in Figure 1.
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Figure 1. Thumbnail of multiple HRSIs coverage.
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2.2. The GCPs

Precision ground control data is the guarantee of geometric accuracy validation of HRSIs.
Our group has done related work about GCPs laid in the Xianning region. A total of 118 GCPs
are located in the test field as shown in Figure 2. Natural and artificial object feature points are chosen
as GCPs by a static GPS field survey. The control points can be evenly distributed in each image,
and the accuracy is about 10 cm, which is able to fully meet the needs of control and check points for
all types of HRSIs.

Figure 2. Distribution map of GCPs in the Xianning test filed.

2.3. Multiple HRSIs Data

Our team acquired 5 kinds of HRSIs within the range of the Xianning test filed. The HRSI data
are summarized in Table 2, and include:

e Pleiades: The processing level is primary product. Primary product is the processing level closest
to the natural image acquired by the sensor. This product restores perfect collections: the sensor is
placed in rectilinear geometry, and the image is clear of all radiometric distortion. RPCs (Rational
Polynomial Coefficients) and the sensor model are provided with the product. The data is a
standard image product which includes nadir-forward-backward panchromatic images.

e  SPOT-6: The processing level is primary product. The image is corrected for radiometric and
sensor distortions, using internal calibration parameters, ephemeris and attitude measurements.
RPCs and the sensor model are provided with the product. The data is a standard image product
which includes nadir-forward-backward panchromatic images.

e ALOS PRISM: The processing level is 1B1 product. On the basis of Level 1A, the data
with radiometric correction and added absolute calibration coefficient. RPCs and the sensor
model are provided with the product. The data is a standard image product which includes
nadir-forward-backward panchromatic images.

e  ZY-3: The processing level is Sensor Corrected, i.e., the images are radiometrically and sensor
corrected, but not projected to a plane using a map projection or datum, thus keeping the original
acquisition geometry. The images were provided with RPCs. The data is a long strip image
product which includes nadir-forward-backward panchromatic images [17].

e TH-1: the processing level is 1B; for each image, the RPCs were provided. The images are
radiometrically and sensor corrected. The data is a standard image product which includes
nadir-forward-backward panchromatic images. Other details about the characteristics of various
satellite sensors are listed in Table 2.
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3. General Geometric Processing Model of HRSIs

As seen in Section 2, all HRSIs are provided with RFEM (Rational Function Model). Toutin and
Teo’s study has shown that the result of satellite image orientation based on the RFM is almost as
accurate as that based on the rigorous geometric model [18,19]. Additionally, the RFM has a simple
form and leads to fast computations, so the orientation selects the RFM as the geometric model.
The RFM describes the relations between the image point coordinates (r,, ¢,;) and the ground point
coordinates (X;, Y, Zy,), which have the following general form [20]:

(Y Za)
n pZ(ananZn) (1)
Cp = pS(anYn,Zn)
" pa(Xn,Yn,Zn)

where (7, ¢;,) are measured line and sample coordinates of the nth image point, corresponding to the
ground point with the object space coordinates (X, Yy, Z;;), which are the variables of a polynomial p;
(i=1,2,3,4), whose degree should not exceed three. For example, the form of the polynomial p; is

pi = a0 + ainZ + LZIQY +ai3 X + ﬂi4ZY +a;5ZX + ﬂ,‘6YX + LZﬁZZ + ﬂigyz + aing + ﬂj10ZYX—|- (2)
a;11Z%Y + a;12Z%X 4+ aj13Y?Z 4 aj Y? X + aj15ZX% + aj16Y X? 4 a;17Z° + aj18Y3 + 2,19 X3
where al-]-(i =1,2,3,4,j=0,1, ---, 19) are rational polynomial coefficients [20].

Furthermore, bias compensation is needed. Previous studies have shown that the affine model
combined with RFM can eliminate the systematic errors in the image points, which improves the
geometry processing accuracy [11]. Therefore, we modify the relationship between the image
coordinates (x, ¥) and the coordinates (X, Y, Z) according to Formula (3) [21].

P(X,Y,Z
x+ag+ax+ay = P;EX,Y,Z%

®
y+bo+ bt by = BEAS

The affine transformation parameters (ag, a1, a2, by, b1, by) are set as orientation parameters. It can
be solved with a small number of GCPs.

4. Validation of Geometric Accuracy for HRSIs

The test is expected to demonstrate to what extent direct georeferencing and sensor orientation
are accurate and efficient methods for the determination of the exterior orientation parameters for
topographic mapping. Currently, such assessments are performed through the validation technique
known as the Hold-Out Validation (HOV) method [22]. It is also known as test sample estimation.
According to this, the data set (known ground points) is partitioned into two subsets: the first one is
used in the orientation model (GCPs—Ground Control Points) and the second one is used to validate
the model itself (ICPs—Independent Check Points).

4.1. Orientation Accuracy with Single Image

The image orientation determines the relation between the object and the image coordinates,
which is dependent on the image product and the imaging mode. So at least for reliability, GCPs are
required. The image orientation can be based on a geometric reconstruction of the imaging geometry,
depending upon the available information. The direct sensor orientation may be available, too, as a
sensor-oriented RPC. Like the geometric reconstruction, this can be improved by GCPs, named and
also bias corrected [21].

The orientation accuracy was analyzed and verified based different schemes of laid GCPs,
as follows in Table 3:

368



Sensors 2018, 18,2121 7 of 11

Table 3. Orientation accuracy of HRSIs.

RMSE of GCP (Pixels) RMSE of ICP (Pixels)
Satellite Number of GCP Number of ICP
x y Plane x y Plane
0 21 - - - 2.300 1.344 2.664
Pleaides 4 17 0.768 0.082 0.772 0.929 1.322 1.591
9 12 1.370 0.700 1.538 0.760 0.891 1.172
0 26 - - - 1.655 2.556 3.045
SPOT6 4 22 0.381 0.166 0.415 1.121 0.821 1.390
9 17 0.876 0.357 0.946 1.217 0.817 1.466
0 11 - - - 2.193 3.943 4511
ALOS 4 7 0.300 0.404 0.503 0972  0.703 1.199
9 2 0.768  0.560 0.951 0.337  0.698 0.775
0 38 - - - 6.342 1.180 6.451
ZY-3 4 34 0.362 0.175 0.402 0.872 1.160 1.451
9 29 0.546 0.479 0.726 0.853 1.123 1.410
0 17 - - - 6.413 2.158 6.766
TH-1 4 13 0.444 0.049 0.447 0.591 1.622 1.726
9 8 0493  1.100 1.205 0.639  1.467 1.600

It can be seen that Pleaides and SPOT6 performed with the highest accuracy without GCPs,
almost reaching the 3 pixel level, from Table 3. The results of ZY-3 and TH-1 are almost the same,
reaching about 6 pixels. When 4 GCPs were laid in the four corners, ZY-3, SPOT6 and Pleaides all
reached the 1.5 pixel level or better. However, residuals of some points in the TH-1 image were still
large after orientation with GCPs. The interior geometric accuracy of TH-1 is poor, as can be seen from
the residuals distributions in Figure 3. More GCPs were added, but no more obvious changes occurred.
Therefore, the scheme with 4 GCPs located in each corner is recommended for HRSI orientation.
Residual distribution figures are shown below in Figures 4-8:

A A A A A
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Figure 3. GCP scheme.
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Figure 4. Residual distributions of check points of orientation for Pleaides.
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Figure 8. Residual distributions of check points of orientation for TH-1.
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4.2. Orientation Accuracy of Block Adjustment with Tri-Stereo Images

All these HRSIs are able to constitute a three linear array stereo model with nadir-forward-backward
images. In consideration of the multi-covered image data with redundant observations information,
block adjustment was carried out with and without GCPs to evaluate the orientation accuracy.
Conclusive results are as follows:

From Table 4 it can be seen that in the situation of no GCP, Pleaides reached an accuracy of
0.860 m in plane and 2.654 m in height, which is really unbelievable, although the 0.5 m GSD (Ground
Sampling Distance) of Pleaides is the highest among the HRSIs. SPOT6 reached an accuracy of 5.336 m
in plane and 4.595 m in height, and also has a superior performance in geometric accuracy without
GCP. The block adjustment accuracy without GCP of Pleaides and SPOT6 meet the requirements for
1:50,000 Topographic maps. However, ALOS, ZY-3 and TH-1 cannot reach that level.

Table 4. Accuracy of block adjustment for HRSIs.

RMSE of GCP (m) RMSE of ICP (m)
Satellite Number of GCP  Number of ICP
x y Plane  Height x y Plane  Height
0 21 - - - - 0.588 0.628  0.860 2.654
Pleaides 4 17 0.123 0.044 0.130 1977 0510 0445 0.677 1.505
9 12 0.574 0.340  0.667 1530 0.403 0395  0.564 1.377
0 26 - - - - 3362 4144 5.336 4.595
SPOT6 4 22 0121  0.329 0.351 0917 1842 1169 2182 2.129
9 17 1231 0480 1321 2209 2006 1309 239 2.294
0 16 - - - - 8.677 31.588 32.758  11.832
ALOS 4 12 1.639 1489 2214 0717  1.655 2381  2.900 1.363
9 7 1263 1393  1.880 1326 1.681 3208  3.621 2.125
0 38 - - - - 12.818 4.263 13508  11.528
ZY-3 4 34 0.030 0.289  0.291 0259 1565 2142  2.653 1.858
9 29 0.355 0.257  0.438 1442  1.640 235  2.870 1.937
0 32 - - - - 29.095 15.089 32775 12228
TH-1 4 28 0.001  0.001  0.001 0.001 8703 14780 17.152  7.467
9 23 0.687 4.306  4.361 1900 4770 8.674  9.899 5.028

From Table 4 it can also be seen that in the situation with GCPs, when four GCPs were laid
in the four corners, the block adjustment accuracy of ZY-3 reaches 2.653 m in plane and 1.858 m in
height, and ALOS reaches 2.900 m in plane and 1.363 m in height. Compared to the accuracy without
GCP, this accuracy is improved a lot, reaching the level of SPOT6, with the accuracy in height being
even better. Pleaides still has the best performance, while TH-1 has the worst performance, reaching
17.152 m in plane and 7.467 m in height, although its resolution of 5 m is the lowest. Under the
condition of setting the GCPs in the four corners, without consideration of artificial pricking points,
the accuracy almost reaches the best level for single image orientation and for block adjustment.
The accuracy undergoes no more changes, even when more GCPs are added. Therefore, four GCPs
laid in the corners is a good layout scheme, which is recommended.

From another point of view, if a satellite image cannot achieve an accuracy of 1-2 pixels with four
GCPs laid, it can be shown that the internal geometric distortion has not been eliminated before the
generation of standard image products. For satellite images without internal geometric distortion,
the four GCPs laid can eliminate most of the errors and achieve high-precision positioning.

5. Conclusions

Different from the traditional methods of verification, the paper has embarked on a unified
test investigating sensor orientation and describes the processing carried out on ZY-3, TH-1, ALOS,
SPOT6 and Pleaides in a geometric accuracy test field, instead of verifying them separately. All the
results are compared under conditions both without and with GCPs, and whether in orientation with
single image or in block adjustment. The performance of Pleaides is the best. SPOT6, ALOS and
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ZY-3 are almost comparable, although the ground resolution of SPOT6 is slightly higher than that of
ZY-3. The performance of TH-1 is a little worse. A layout scheme of four GCPs laid in the corners is
recommended, and can be used for geometric precision processing and evaluation of HRSIs.

Also, the test field set up in Xianning is presented with the aim of investigating spaceborne
optical imagery. The reason for choosing the Xianing area as the test field is explained in detail,
and the function of the Xianning test field is also illustrated for the geometric accuracy validation of
HRSIs. The test field will undoubtedly be important both for development, analysis, and simulation
of platforms and sensors in the future. In addition, verification work of the HRSI data obtained will
continue to be carried out.
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ARTICLE INFO ABSTRACT

This study illustrates the potential of alteration extraction in coal-bed methane (CBM) reservoirs using the re-
cently available Sentinel-2 data. This study then evaluates the capabilities for mapping the altered minerals and
vegetation. In the alteration mapping process, we separately analyzed the key remote sensing signatures of
altered minerals and geobotanical anomalies based on the hydrocarbon micro-seepage theory. The diagnostic
spectral characteristics of irons, clays and altered vegetation were concentrated and demonstrated the dis-
tribution of hydrocarbon micro-seepage. In the bare soil region, the altered minerals, including irons and clays
were extracted through band math and principal component analysis (PCA) methods. In the vegetation area
mapping, the diagnostic spectral feature parameters, such as the locations and slopes of three feature edges, were
calculated. In addition, the mapping accuracy was assessed based on the extraction results of Hyperion data
through full spectral profile matching method and the X-ray diffraction (XRD) analysis results. The results show
that: 1) compared with band math and PCA methods, the different extraction methods were suitable for different
minerals; 2) the extraction results of iron and clay minerals were most accurate (78.33% and 76.67%, respec-
tively) with XRD analysis; 3) the highest rate of change of the feature edge slope was up to 39% with a reference
spectrum; and 4) the distribution of alteration information was consistent with the Hudi coal mining area in
Jincheng, Shanxi province. The potential geological application of Sentinel-2 data was revealed to identify the

Keywords:

Sentinel-2 data

Hyperion data

Hydrocarbon micro-seepage
Alteration extraction
Coal-bed methane reservoirs

direction of CBM exploration in a large scale, highly efficient, convenient, and inexpensive way.

1. Introduction

As the world's alternative energy resources, coal-bed methane
(CBM) is a form of unconventional and natural gas generated in coal
beds (Sircar, 2000; Ayers, 2002; Fu et al., 2009). CBM consists mainly
of methane (more than 90%), some carbon dioxide and nitrogen, and
several heavier hydrocarbons, such as propane or butane. CBM has
recently become an important source of energy in many countries.
Furthermore, CBM which is emitted into atmosphere in quantity during
coal production, can not only cause the waste of resources, but also
pollute the environment. The global explorations of CBM have a huge
impact on lessening the energy crisis and alleviating environmental
pollution (Yao et al., 2009; Moore, 2012). Traditional drilling and
geophysical prospecting methods use logging, gravity, electromagnetic
and seismic technology as bases. These methods are time-consuming,
cost-intensive, and unsuitable for certain field conditions due to their
use of large and heavy equipment. However, utilizing the current re-
mote sensing technique in exploring CBM resources allows a synoptic

* Corresponding author.

view in geology that evaluates extensive areas at a low cost and with
reduced field-work (Lammoglia and Filho, 2012).

Specifically, remote sensing imagery can identify structure, li-
thology, and landscape features, including lineaments, rocks composi-
tion, and drainage at a large-scale region, by considering differences in
tone, shape, and spectral-mineralogical information. Until now, the
spectral characteristics of different minerals and rocks had been ex-
amined in the visible-near infrared bands (Hunt and Ashley, 1979). For
most kinds of rocks, such as mafic, granodiorite, and quartz rocks, the
rock alterations are usually identified and comparatively analyzed
through band math and principal component analysis (PCA) methods
using ETM and ASTER (Advanced Spaceborne Thermal Emission and
Reflectance Radiometer) imagery in the bare soil region based on the
spectral absorption characteristics of altered minerals (Crosta and
Moore, 1989; Tangestani and Moore, 2001; Pour and Hashim, 2012; Gu
et al., 2015; Gu and Sheng, 2016; Rajendran and Nasir, 2017; Liu et al.,
2017). Although the precise content of the mineral was still difficult to
extract, the remote sensing method could supply a seamless mineral
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map (Souza Filho and Drury, 1998; Ducart et al., 2006; Zheng et al.,
2015; Qin et al., 2016). Furthermore, the remote sensing data had been
improved to extract oil and gas, provide accurate altered information,
enhance the effects of estimation, and significantly decrease the ex-
ploration risks. With the narrow bandwidths and high-spectral band,
hyperspectral remote sensing data can be applied to identify and extract
alteration minerals through the distinct absorption features of most
minerals (Vane and Goetz, 1993; Chen et al., 2012; Xia et al., 2016;
Zhou et al., 2017).

Micro-seepage, wherein a natural hydrocarbons escape slowly from
a subsurface source, is the foundation of oil and gas exploration that
utilizes remote sensing technology. Approximately 80% of the world’s
oil basin has micro-seepage, except for those with unfractured seals
(Clarke and Cleverly, 1991). 89% of drilling on exploration is asso-
ciated with a micro-seepage anomaly in discoveries (Schumacher,
1996). Micro-seepage theory was used to identify the potential oil and
gas reservoirs based on the diagnostic spectral features of alteration
anomalies through remote sensing methods or by integrating them with
interpretations from other materials, including geological, geochemical
and geophysical data (Horig et al., 2001; Van der Meer et al., 2002;
Kiihn et al., 2004; Van Der Werff et al., 2006; Fu et al., 2007; Lyder
et al., 2010; Van der Meer et al., 2012). Studies using the above-men-
tioned detection methods showed that hydrocarbons generally accu-
mulated along fault areas and structurally controlled drainage, and
several reservoirs, such as the Gulf of Mexico and Brazil, were identified
in the history of the petroleum industry (Almeida-Filho et al., 2002).
However, few studies have used the remote sensing method to extract
hydrocarbon anomalies in the CBM reservoirs.

The objective of the present study is to evaluate the potential of
Sentinel-2 imagery for extracting hydrocarbon alteration anomalies in
CBM reservoirs through the following means: (1) establishing extrac-
tion algorithms to produce hydrocarbon prospective maps using
Sentinel-2 data in the Southern Qishui Basin; (2) extracting the al-
teration anomalies through Sentinel-2 and Hyperion images in bare soil
regions and vegetation areas, respectively; (3) comparing the extraction
results of Sentinel-2 data and Hyperion imagery using the different
algorithms; and (4) verifying the results using the measured spectral,
sample and geological data in the field.

2. Study areas and dataset
2.1. Geological background of the study area

The Qinshui Basin, located in southeast of Shanxi Province, China,
covers 2922 km? and is divided into three parts: Fanzhuang, Panzhuang
and Zhengzhuang. The CBM resource in Qinshui Basin is estimated to
contain 3.28 x10'2 m® of gas (Wang et al., 2014). Thus, the Qinshui
Basin deserves commercial CBM exploration and exploitation. The
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study area (35°39’'N-35°50’N, 112°29’E-112°46E) lies in the southern
Qinshui Basin in Hudi City as shown in Fig. 1(a).

2.1.1. Stratum and lithology

The stratigraphic structure of the study area can be divided into
seven groups from top to bottom: Quaternary (Q), the Upper Permian
Shihezi Formation (Fm.), the Lower Permian Shihezi Fm., the Lower
Permian Shanxi Fm., the Upper Carboniferous Taiyuan Fm., the Upper
Carboniferous Benxi Fm. and the Middle Fengfeng Fm. Meanwhile,
Taiyuan Fm. and the Shanxi Fm. are the main coal-bearing strata, with
an average thickness of 150 m. Given the continental-oceanic interac-
tion environment in the Taiyuan Fm. As well as the delta and fluvial
environments in the Shanxi Fm., the lake plain, blocked channel, and
delta plain become conducive for the formation of coal (Wang et al.,
2014). However, the coal formed in the lagoon and gulf environments is
low quality in the Benxi Fm.

The study area mainly developed mudstone, sandy mudstone,
sandstone, siltstone, argillaceous siltstone and limestone. Kaolinite
(clay mineral) and calcite (carbonate) are the main component of
mudstone and limestone respectively. In particular, the relative con-
tents of the clay minerals reached 50% in the argillaceous rocks. Based
on the recent geological researches, the irons, carbonates and clay
minerals indicated the reducing environment which generated by hy-
drocarbon micro-seepage were widely distributed in the study area.
Therefore, the irons, carbonates and clay minerals, such as siderite,
calcite, montmorillonite and kaolinite, were considered as the in-
dicatory minerals for the alteration extraction by remote sensing tech-
nique.

2.1.2. Tectonics

The study area is located at the Fanzhuang coal district in the
Qinshui Basin which distinct from the North China Craton Basin as a
separate and complex dual syncline. There are only a few faults and
folds with an axial strike of NNE-SSW and near N-S, such as Sitou fault,
Guxianhe fault and Dongshanling fault (Fig. 1(b)). Specifically, the
Sitou fault located the northwestern study area is a tenso-shear normal
fault, with a strike of 30° NE and a dip angle of 70°. This fault is 350 m
wide and the length is about 10 km. As the important boundary of
groundwater in the study area, the Sitou fault deeply influenced the
formation and migration of the CBM.

2.1.3. Coal seam

The total thickness of coal-bearing strata is 144 m, which contain
twelve coal seams in the study area. The detailed information of two
key coal seams about micro-seepage is shown in Table 1.

The main CBM reservoirs are distributed in the 3# and 15# coal
seam that belong to the Lower Permian Shanxi Fm. and the Upper
Carboniferous Taiyuan Fm., respectively. The average thickness of 3#

Fig. 1. (a) Location map of study area in the Shanxi pro-
vince, China; (b) Distribution of the coal-bearing stratum,
fault, well and CBM content in study area (Zhang et al.,

CBM Well

Outcrop of Shanxi Formation
Fault

[<Z=8] M content of 3# Coal

Carbon Isotope Value
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Table 1
Introduction of two key coal seams about micro-seepage.

Ore Geology Reviews xxx (XXXX) XXX—XXX

No. Coal-bearing strata  Coal seam thickness/m Coal seam depth/ Gas content/(m3/t) Texture of coal Roof and floor lithology
m seam
3#  Shanxi formation 4.10-6.815.60 430-770 9-32.019 simple and stabile  roof lithology: mudstone and siltstone; floor lithology:
mudstone and sandy mudstone
15# Taiyuan formation 2.20-5.70 3.24 unmined 8-25.615.8 simple and stabile  roof lithology: limestone; floor lithology: mudstone and

sandstone

and 15# coal seams is about 3 m and 6 m, respectively, and their burial
depth range is approximately 400 m to 800 m.

2.2. Dataset and pre-processing

2.2.1. Sentinel-2 data

As part of the European Copernicus program, the European Space
Agency (ESA) successfully launched the Sentinel-2A satellite, which
armed to provide high spatial resolution optical observations over
global land surfaces, on 23 June 2015 (Donlon et al., 2012).

Sentinel-2 satellite carries a wide-swath, high-spatial resolution and
a multi-spectral imager (MSI). Moreover, it has 13 spectral bands
spanning from the visible (VIS) and the near infrared (NIR) to the short
wave infrared (SWIR) (433-2190 nm) (Table 2) (Drusch et al., 2012).
Due to the bands of the 10 and 20 m spatial resolution utilized in this
study, the bands of 20 m spatial resolution needs to be resampled to
10 m by nearest neighbor method.

Sentinel-2 possesses the following advantages: (1) a wide coverage,
that is, a wide swath that is approximately 290 km (20.6° field-of-view
from an altitude of 786 km) (Malenovsky et al., 2012); (2) a high re-
solution, i.e., a spatial resolution of up to 10 m; (3)novel spectral bands,
wherein the three red-edge bands are added especially for vegetation-
related applications; (4) its short revisit frequency provides a global
coverage every five days using the Sentinel-2B sensor launched on 7
March 2017; and (5) free access. Given the unprecedented specifica-
tions above, Sentinel-2 imagery has been widely used in land and land
cover mapping (Schuster et al., 2012), forest stress monitoring (Eitel
et al., 2011), built-up areas mapping (Pesaresi et al., 2016; Yang and
Chen, 2017), water detection (Du et al., 2016)and biophysical variable
retrieval (Verrelst et al., 2012; Clevers and Gitelson, 2013).

Sentinel-2 Level-1C product (relative orbit: R075) comprises
100km X 100 km tiles in the UTM/WGS84 projection and provides
top-of-atmosphere (TOA) reflectance (Sibanda et al., 2015). In this
paper, the Sentinel-2 MSI image which acquired on June 22, 2016 was
downloaded from the Copernicus Open Access Hub's website (https://
scihub.copernicus.eu/). It was of high quality, cloudless (1.32%), and
had produced radiometric and geometric corrections, such as orthor-
ectification and spatial registration on a global reference system with
sub-pixel accuracy (Sibanda et al., 2015). Hence, the pre-processing
only required the following steps: (1) precise geometric correction that
improved the geographical coordinates accurately using a topographic
map (1: 50 000); (2) mosaic imaging and masking to obtain the study
area image and compare it with Hyperion data centered at 35°43’29”N,
112°36°29”E; (3) image enhancement which mainly included linear and
contrast stretching of a single band, band ratios, false color composites

Table 2
Sentinel-2 spectral bands definition and spatial resolution.

Band Central Spatial Band Central Spatial

number  wavelength resolution/  number  wavelength resolution/
/nm m /nm m

1 443 60 8 842 10

2 490 10 8a 865 20

3 560 10 9 945 60

4 665 10 10 1380 60
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(FCC), and PCA. The sentinel-2 imagery of the study area was covered
by vegetation, built-up areas, and water bodies and is shown in
Fig. 2(a).

2.2.2. Hyperion data

The other hyperspectral data in this paper are provided by the
space-borne hyperspectral sensor, Hyperion, on the National
Aeronautics and Space Administration (NASA) Earth Observer-1 (EO-1)
satellite (Landgrebe et al., 2001), which is a push broom imaging
spectrometer launched in November 2000. Moreover, it has 242 bands
covering the VIS, NIR, and SWIR regions at 10 nm spectral sampling
intervals with a 30 m spatial resolution. Specifically, the NIR and SWIR
bands are the most useful wavelength regions for spectral signature
extraction, making Hyperion data highly suitable for identifying al-
teration minerals (Hunt and Salisbury, 1970; Hubbard et al., 2003).

The good-quality Hyperion data (path/row: 125/35) in this study
were acquired from the study area on October 6, 2014, with approxi-
mately 9% cloud cover. To correct the sensor artifacts and the atmo-
spheric and geometric effects, the Hyperion data underwent the fol-
lowing pre-processing steps (Kruse et al., 2003; Ren et al., 2014): (1)
remove invalid and useless bands that were uncalibrated and strongly
affected by water vapor and noise and further analyze the 152 bands of
the final dataset; (2) fix the bad lines caused by the functional failure of
a single detector element through the average of the neighbor lines; (3)
perform destriping using the global destriping technique to eliminate
the systematic noise and the striping in the Hyperion image; (4) reduce
noise using the Savitzky-Golay Filter method; (5) execute atmospheric
correction using FLAASH tools provided by ENVI 5.3; (6) perform
geometry calibration using a second-order polynomial corresponding to
the Sentinel-2 image. To compare with extraction results between
Sentinel-2 and Hyperion data, the spatial resolution of Hyperion data
needs to resample from 30 m to 10 m. The true color composite image is
shown in Fig. 2(b). Flowchart of Hyperion data processing steps is
shown in Fig. 3. In order to analyze the quality of Hyperion data and
make sure that the date is useful for alteration mineral extraction, the
SNR of Hyperion data used have been calculated in our pervious works
(Zhang et al., 2015). Compared with the precious studied (Gersman
et al.,, 2008; Green et al., 2003), our estimated results gave a well
consistency.

2.2.3. Field spectral data

Aside from the above image data, the systematic fieldwork was
executed at the study area in September 2014. The different types of
rock, vegetation, and soil were considered as field samples, and all
spectral measurements adjoining the CBM were taken under cloudless
conditions between 10:00 and 14:00 using the ASD FieldSpec FP
spectrometer (Analytical Spectral Devices, Boulder, CO. USA). The
spectrometer was fitted with a 25° field-of-view and was operated in the
wavelength ranging from 350 nm to 2500 nm, with sampling intervals
of 3 or 8 nm. Reflectance spectra were measured through calibration
with a standardized white panel. A panel radiance measurement was
taken before each measurement. Each sample was measured five times,
and the average value was calculated afterwards. The 200 samples near
the CBM well were scanned in the study area. Aside from the abnormal
spectral data, 50 samples of reference spectra were collected from
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Jiafeng town, far from the CBM enrichment region, for an analysis and acquired spectra was necessary to obtain more information about hy-
comparison of the abnormal spectral. drocarbon micro-seepage based on the View SpecPro. The noise from
To enhance the spectral characteristics, the pre-processing of the instrument and in the in-situ environment was reduced through the
Fig. 3. Flowchart of Hyperion data processing steps in this
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average filter method. In addition, the 1st derivative and continuum
removal were applied to gain further spectral characteristics to extract
the alteration information (Kumar et al., 2013; Malenovsky et al.,
2013).

3. Theory and method
3.1. Micro-seepage theory

Distinguished from conventional oil and gas reservoirs, the CBM
exists with three ordinary states (adsorbed, free and water-soluble) in
coal seam. Although CBM is generally confined beneath the cap rocks
and absorbed on the inside of pores within the coal seam, the strong
diffusion ability of CBM at free state and the big pore diameter of the
cap rock, which leads to CBM leakage towards ground surface above the
CBM reservoirs. Additionally, it is certain that there is much open
fractures and underground water considered as the migration pathway
in the CBM reservoirs, so CBM at free and water-soluble state can mi-
grate slowly near the ground surface with faults and underground water
regardless of the ability of CBM (Rice, 2003; Pashin et al., 2014; Zhang
et al., 2000; Chen, 2012). Given that the underground hydrocarbon
permeates up to elevate the hydrocarbon components in the soil, the
interaction of hydrocarbon components with the material of the stra-
tigraphic column generates an ample variety of physical, chemical,
botanical, microbiological, and mineralogical alterations on the sur-
face. For example, the interaction with the ground water forms a weak
acid, makes the Fe®™ translate to Fe®*, generates hydroxyl minerals,
combines into the carbonate with the metal ions, keeps the clay mineral
enrichment, shift the vegetation's red edge to blue, and causes other
effects. Conceptual model of hydrocarbon seepage mechanism is shown
in Fig. 4. The above phenomena indicate the reflectance spectrum of
rock or vegetation depending on the mineralogical composition of its
surface, as the absorption characteristics of these minerals in VIS, NIR
and SWIR regions are produced by either electronic or vibrational
processes (Hunt and Salisbury, 1970). A comprehensive analysis of the
spectral absorption compositional features can provide significant in-
sights into the causes of spectral variations for extracting remote sen-
sing alterations (Cloutis and Gaffey, 1991; Cloutis et al., 2004).

3.1.1. Altered minerals

3.1.1.1. Bleaching. Bleaching promotes the red bed discoloration
anomaly due to the action of reduced solutions that facilitate the
removal of ferric ions and the generation of ferrous ions (Donovan,
1974; Schumacher, 1996; Van der Meer, et al., 2002; Everett et al.,
2002; Khan and Jacobson, 2008). The chemical reactions are shown in
the following expressions:

C,H,, + Fe,0; —» Fe;04 + FeO + CO, + H,O (€8]

C,H,, + Fe(OH); — Fe;0, + FeCO; + 2H,0 2)

Atmosphere Mineral alleration

Redox recation

Soil and rock

Fig. 4. Conceptual model of hydrocarbon seepage mechanism.
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Fig. 5. Offset spectral plots of major and altered minerals from the USGS mineral spectral
library (ENVI 5.3) involving iron minerals, carbonates and clay minerals.

This phenomenon can be detected based on the rock or soil spectral
characteristics in VIS and NIR bands. In particular, the electromagnetic
spectrum of ferric-bearing minerals (i.e., limonite, hematite (Fe;O3), or
goethite) has a steep gradient in the VIS region. Once these minerals are
eliminated, a sharp decrease is observed in the visible reflectance gra-
dient (Lammoglia and Filho, 2013). Furthermore, given that the ferric
ions change to ferrous ions (i.e. pyrite, siderite (FeCOs3), magnetite
(Fe304), and eventually jarosite), a strong absorption of ferrous ions
shows a broad shallow band at 1.0-1.4 um apart from the absorption
features of ferric ions at 0.45-0.5pum and 0.8-0.9 um (shown by the
vertical line in Fig. 5). These characteristics can be used to separate
bleaching from unbleached red beds by spectral data.

3.1.1.2. Carbonates. Carbonates are the obvious alteration minerals
that combine with the metal ions by chemical oxidation or
bacteriologic conversion under the micro-seepage of hydrocarbons
micro-seepage and enrich enrichment in the surface (Clarke and
Cleverly, 1991; Schumacher, 1996). The chemical reaction is shown
in the following expression:

CHy4 + CaSO4 + O, — CaCO; + H,S 3)

The carbonate minerals such as calcite (CaCOs3), dolomite and
magnesite possess useful narrow absorption features around at 2.35 pm
due to their C-O bands (Hunt and Ashley, 1979; Mars and Rowan,
2010). Particularly, the siderite as near-surface diagenetic carbonates is
formed through the solubility of ferric ions present in other minerals
and their subsequent incorporation as a byproduct of methane oxida-
tion (Horig et al., 2001). The moderate absorption feature at 2.3 pm is
caused by calcite content and subordinately, by others around 1.9, 2.0,
and 2.5 pym depending on the spectral characteristics of the carbonates.
These common calcite bands can be used to extract anomalies and map
the carbonate concentrations. Hence, carbonates can be distinguished
and identified by variations in their absorptions (shown by the vertical
dashed line in Fig. 5) in the SWIR range.

3.1.1.3. Clay minerals. A reduced and slightly acidic environment
produced by the gas that contains CO5, H,S, and methane close to the
surface promotes the alteration of feldspar minerals into clay minerals,
and may convert the normally stable illite clays into kaolinite (All4
[SiO10]1(OH)g), which is closely related with hydrocarbon anomalies
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(Clarke and Cleverly, 1991; Yang et al., 1998). The spectral
characteristic of kaolinite exhibits two diagnostic double absorption
features in the SWIR region centered at 1.4 ym and 1.9 pm as well as a
series of features between 2.0 um and 2.4 um (shown by the vertical
dash-dot lines in Fig. 5), which result from the hydroxyl bands (Mars
and Rowan, 2010). Moreover, Montmorillonite ((Na, Ca)o (Al
Mg)»Si4010(OH)>n(H20)) has a 2.2 pum AIOH absorption feature. The
doublet and subordinate absorption features can be indicative in clay
mineral enrichment areas using spectral data. In addition, bleaching, as
a function of secondary effects, can enhance the spectral characteristic
of clay minerals in soil (Lammoglia and Filho, 2013). The absorption
features of the clays tend to become more evident when the ferric ions
are removed from the soil.

3.1.2. Geobotanical anomalies

Geobotanical anomalies generally exist in environment with heavy
metals and hydrocarbons, such as areas with a lack of vegetation, the
presence of an indicator plant, canopy architecture variations and plant
cell structure change, which are the commonly marked features caused
by the micro-seepage of hydrocarbons. Most of the studies that de-
monstrate, the above mentioned changes of vegetation are based on the
spectral character variations on the different spectral bands: the var-
iation of chlorophyll pigment manifested in VIS bands, the plant call
structure with responses from NIR bands and the leaf water in SWIR
bands (Horig et al., 2001; Sanches et al., 2013). Moreover, the diag-
nostic spectral features of altered vegetation are analyzed through
mathematical and statistical analyses. The main spectral features of
vegetation comprise four feature points (blue valley, green peak, red
valley, and near infrared high reflection point) and the three feature
edges (blue edge, yellow edge, and red edge). Given the reflectance of
vegetation that rapidly increased from 700 nm to 800 nm, the curve-
like linearity with a big slope is called, “red edge”, which is a significant
parameter for researching the growth status of vegetation. The vege-
tation under hydrocarbon stress displays a characteristic displacement
of the “red edge” inflection towards short wavelengths, and is called,
“Blue Shift”, which is a famous phenomenon and has been used to re-
motely extract geobotanical anomalies associated with hydrocarbon
micro-seepage as shown in Fig. 6 (Clarke and Cleverly, 1991; Horig
et al., 2001; Noomen et al., 2012). Moreover, it provides a theoretical
basis for the study of vegetation contamination using hyperspectral
remote sensing technology. In addition, the location, reflectivity and
slope of the three feature edges essential to identifying the diagnostic
anomaly characteristics in the CBM enrichment region.

In summary, the interesting targets of the hydrocarbon micro-see-
page prospective map can be identified from the following two aspects
in this paper: 1) in the bare soil region, areas with a high concentration
of hydrocarbon gas and areas where the ferric iron are removable and
areas of carbonate (especially calcite and siderite) and clay (particularly
kaolinite) enrichment; and 2) in the vegetation region, the areas where

.5 normal

0.4

red edge

LN L L B

0.3

reflectance

T

L

1000 1500
wavelength (nm)

2000 2500

Fig. 6. Spectral of normal reference and altered sample vegetation in the field.
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Fig. 7. Wavelength of classical altered minerals from the USGS mineral spectral library
resampled to Sentinel-2 data.

geobotanical anomalies exist and experience have strong changes in the
spectral features of vegetation. Notably, the above alteration char-
acteristics can be affected by hydrocarbons at surfaces; however, in
practice they do not have to occur singularly or simultaneously, and
none of them are in themselves unique to hydrocarbon micro-seepage.
Moreover, given the other reasons, such as heavy metal contamination
and methane pipeline leakage, the above phenomena can emerge.

3.2. Information extraction methods

3.2.1. Spectral absorption feature extraction method

As the typical methods, band math and PCA methods are widely
utilized to extract the mineral alteration information by using remote
sensing imagery which based on the spectral absorption feature of al-
tered minerals (Rowan and Mars, 2003; Pour and Hashim, 2012;
Rajendran and Nasir, 2017; Liu et al., 2017). A band math method, such
as the normalized difference vegetation index (NDVI) that can enhance
the effect of vegetation, is applied. The wavelength of classical altered
minerals (calcite, siderite, montmorillonite, kaolinite, limonite and
hematite) from the USGS mineral spectral library, as resampled to
Sentinel-2 data is shown in Fig. 7.

The reflection and absorption features of clay minerals, such as
montmorillonite and kaolinite, are at 1610 nm and 2190 nm, corre-
sponding to bands 11 and 12 of Sentinel-2 data, respectively. As iron
minerals, limonite and hematite have one clear absorption feature at
865 nm corresponding to band 8a and two clear reflection features at
740 nm and 1610 nm corresponding to bands 6 and 11, respectively.
Hence, band ratios 11/12, 6/2, and 11/8a of Sentinel-2 data can im-
prove the enrichment areas of hydroxyl bearing, iron oxides, and fer-
rous iron oxides. The above RGB band combinations are the prime FCC
that can be created for visual interpretation over the alteration field of
the study area (Van der Meer et al., 2014). On the other hand, con-
sidering that Sentinel-2 data only contain a few SWIR bands, the di-
agnostic spectral features of the carbonates minerals at 2300 nm do not
exist in Fig. 7.

As a mathematical procedure, PCA is used to minimize the re-
dundant information within highly correlated bands and produce a set
of values of linearly uncorrelated variables called principal compo-
nents, which is widely utilized to extract the alteration minerals (Crosta
and Moore, 1989). A part of the principal components contain subtle
but important information used to enhance understated altered
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features, from which alteration information is extracted in a grey scale.
The component used for extraction is chosen by the eigenvector of the
covariance. Given that Sentinel-2 band ratios are an analogue of ASTER
band ratios, the PCA method was used on bands 3, 6, 8a, and 11 to
extract the ferrous alterations and bands 3, 8, 11, and 12 to extract the
hydroxyl alterations.

In the vegetation region, the locations (A), reflectivity (R), and
slopes (k) of three edges were calculated to describe the altered vege-
tation features. Consider red edge as an example:

K; = (Ry30—Re70)/(780—670) ()]

)

where R, = (Re70 + R780)/2, Re70, R700, R740 and Rygo are the re-
flectance at 550 nm, 670 nm, 680 nm, 700 nm, 740 nm, and 780 nm,
respectively.

Ar =700 + 40 X (R—Ry00)/(R7a0—Ra00)

3.2.2. Full spectral profile matching method

In recent years, the hyperspectral remote sensing methods of al-
teration anomaly information extraction have been based the full
spectral profile matching. Researchers have successfully analyzed and
mapped the distribution of the alteration anomalies using hyperspectral
remote sensing (Percival et al., 2013; Chen et al., 2013). Hydrocarbon
alterations, such as calcite, kaolinite, and montmorillonite, were accu-
rately extracted through matched filtering (MF), mixture tuned mat-
ched filtering (MTMF), spectral feature fitting (SFF) and spectral angle
mapper (SAM) from hyperspectral remote sensing image (Molan et al.,
2014; Farooq and Govil, 2014). In the MF algorithm, the similarity of
pixel spectra and reference spectra are obtained using the local se-
paration techniques based on the reference spectra, such as the end-
member spectra, field measurement spectra and USGS mineral spectral
library. In this method, the response of the known end-member spec-
trum is maximized, whereas the response of the unknown background
is suppressed (Harsanyi and Chang, 1994). In the SFF algorithm, a least-
square estimation method is used to calculate the quality of fitting
between the pixel spectrum and reference spectrum, which are both
processed by a continuum removal algorithm (Chen et al., 2007). In the
SAM method, the angle between the pixel spectrum and reference
spectrum in the n-dimensional vectors space (n is the number of bands)
is calculated to estimate their comparability (Kruse et al., 1993). In this
paper, the clay, carbonate and iron minerals were extracted through
MF, SFF, and SAM algorithms, respectively, in the bare soil region to
delineate the altered mineral abnormal area. In the Hyperion data, the
alteration information was extracted using end-member spectra as the
reference spectra which have similar diagnostic absorption character-
istics with field spectra and USGS spectra of alteration minerals.

3.3. Validation method

Virtual verification is the basis of the accuracy evaluation method,
which combines visual interpretation of the remote sensing data with
the geological data (Chen et al., 2014; Molan et al., 2014; Chen et al.,
2015). The using of the field samples based on the sample locations is
also a typical method of evaluation. To further verify the results, 60
field samples were selected to confirm the altered minerals extraction
results by X-ray diffraction analysis (XRD).

4. Results and analysis
4.1. Bare soil region

4.1.1. Iron mineral

In the study area, the main types of altered minerals are irons, clays,
and carbonates combined with the geology materials. However, only
the iron and clay minerals were extracted through band math and PCA
methods from Sentinel-2 image in this paper. Considering the
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Table 3
Eigenvectors of principal components (band 3, 6, 8a, and 11).

Band 3 Band 6 Band 8a Band 11
PC1 0.260284 0.570124 0.325139 0.708163
PC2 0.232001 —0.168392 0.888728 —0.357745
PC3 —0.919887 —0.037926 0.321854 0.220863
PC 4 0.179545 —0.803221 0.029267 0.567224

absorption feature of iron mineral at band 8a and two clear reflection
features at bands 6 and 11, the diagnostic spectral features of iron
mineral were enhanced by band math (band 11 / 8a) and PCA (band 3,
6, 8a, and 11) methods. The second principal component (PC 2) was
selected for the iron mineral extraction because the PC 2 eigenvectors of
band6, 11 and band 3, 8a were opposite in signs. The eigenvectors of
the principal components of band 3, 6, 8a, and 11 are shown in Table 3.
The threshold was set based on the average value plus the triple var-
iance. The extraction results of iron minerals after the mean filtering are
shown in Fig. 8 and denoted in red.

Fig. 8 indicates that the distribution of the iron mineral in the two
methods, which was observed mostly in the central image and in the
southwest region, was similar. The total PCA results were apparent,
especially in the southwest region. The geology data show that the
central region was the Hudi coal mining area in Jincheng, Shanxi
Province. The distribution of the iron mineral was consistent with the
coal mining area in which the CBM had been mined. The southern area
could be considered a potential CBM enrichment region for further
research.

4.1.2. Clay mineral

Given the clear absorption feature of clay minerals at band 12 and a
reflection feature at band 11, the diagnostic spectral features of clay
minerals were enhanced by band math (band 11/12) and PCA (band 3,
8, 11, and 12) methods. The fourth principal component (PC 4) was
selected for the altered clay mineral extraction because the PC 4 ei-
genvectors of band 12 and the other bands were opposite in signs. The
eigenvectors of the principal components of band 3, 8, 11, and 12 are
shown in Table 4. The threshold was set based on the average value
plus the double variance. The extraction results of clay minerals after
the mean filtering are denoted in blue in Fig. 9.

Fig. 9 shows that the distribution of the clay mineral in the two
methods varied slightly. Although the distribution of the clay minerals
was basically similar in the central image, the distribution by the PCA
method was largely visible in the southern region. The geology data
show that the central region was also in the Hudi coal mining area. The
distribution of the clay mineral in the central region corresponded to
the CBM enrichment region. On the other hand, the extraction results in
the southern area require further research.

4.1.3. Vegetation region

The main field vegetation samples comprised corn, mulberry, and
cocklebur canopy, which were common in the study area. Meanwhile,
the diagnostic spectral characteristics of the field spectral were calcu-
lated. A part of the statistical results of the three feature edges, namely
location, reflectivity, and slope, are shown in Table 5. Meanwhile, the
field photos are shown in Fig. 10. To visually compare the diagnostic
spectral characteristics of three feature edges, the linear fitting results
are shown in Fig. 11(a) to (c). Fig. 11(d) shows that the distributions of
altered vegetation are based on the red edge slope.

Table 5 and Fig. 11(a) to (c) show that the changes of yellow edge
slope, red edge slope, and the location of red edge were most sig-
nificant, showing a rating of 39% with the reference spectrum in the
vegetation region. In Fig. 11(d), the distribution of altered vegetation
was mainly in the central image and coincided with Hudi coal mining
area and the east Taihang Mountain.
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Table 4
Eigenvectors of principal components (band 3, 8, 11, and 12).

Band 3 Band 8 Band 11 Band 12
PC1 0.296545 0.372710 0.802371 0.359651
PC2 0.146439 0.712866 —0.561671 0.393577
PC3 0.843122 —0.449958 —0.199606 0.216428
PC 4 —0.423984 —0.387875 —0.029727 0.817867

5. Validation

To verify the results, the alteration anomalies were extracted using
the Hyperion data through full spectral profile matching method in
Fig. 12(a). Sixty field samples collected from the homogeneous region
of study area are located around the potential CBM enrichment region
in Fig. 12(b). Producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA), and kappa coefficient (Kappa) were used to evaluate the
final alteration extraction results based on the XRD analysis (Yang and
Chen, 2017). The accuracy assessment is shown in Table 6.

According to the full spectral profile of altered minerals and vege-
tation, the results of clay, carbonate, and iron mineral alteration
anomaly information from the Hyperion image by MF, SFF, and SAM
algorithms were largely distributed in the central and southern regions.
Furthermore, to sum up the altered mineral and vegetation information,
the prospecting signs were identified, and the regional anomaly areas
were delineated. Synthesizing regional geology, the well logging and
seismic data in the study area, the extracted results were consistent
with the Jincheng Hudi mine area of Qinshui basin in the black rec-
tangle of the central image. Specifically, the distribution of the irons
and clays were consistent with the extraction results of Sentinel-2 data.
Besides, the XRD analysis was applied to validate the effectiveness and
extraction accuracy of Sentinel-2 data, of which the total accuracy
value reaches to 77.50%, were computed the average of the better ac-
curacies of clay and iron minerals (78.33% and 76.67%) by different
extraction methods. This finding confirmed the authenticity and
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reliability of the alteration anomaly information extraction using re-
mote sensing technology. Furthermore, the southern region is a po-
tential target. However, the results of altered vegetation by Hyperion
data were unsatisfactory. The spatial distribution of the altered vege-
tation appeared sporadically because the spectral features of altered
vegetation were minute and influenced by many factors, one of which
was the noise of the Hyperion data and background.

6. Discussion

This study focused on alteration extraction in the CBM enrichment
region using the Sentinel-2 data by different methods. The spectral
features of the iron, clay minerals and altered vegetation on the surface
were analyzed. The compared results of Hyperion data, geological data
and XRD analysis demonstrated the potential effectiveness of Sentinel-2
data for CBM exploration.

The spectral features of Sentinel-2 data (VIS, VNIR and SWIR) were
analyzed targeting the identification of iron and clay mineral to detect
hydrocarbon micro-seepage. The band math and PCA methods were
used to extract the classical minerals, respectively. For the iron mineral,
the results of two methods showed consistency with the extraction re-
sults of Hyperion data and XRD analysis results in the central image.
However, the band math method is more appropriate for the iron mi-
neral extraction than the PCA method because false information barely
existed in the southern image. Meanwhile, the two methods obtained
different results for clay mineral. Aside from the central area, the
southern regions spatially coincided with the extraction results of
Hyperion data and the XRD analysis where the abundant clay minerals
were well-extracted by using the PCA method. Therefore, the PCA
method is more suitable for clay mineral extraction than the band math
method. Nevertheless, the carbonates minerals, such as calcite and
siderite, were hardly extracted because SWIR bands were insufficient.
The diagnostic spectral features of carbonate minerals were not yet
available in Sentinel-2 data. In turn, the integration of the multi-source
data, such as ASTER, will become necessary in the future.
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Until now, the altered minerals have been thoroughly examined,
whereas the geobotanical anomalies have been frequently overlooked,
leading to the following two aspects may result. On one hand, a ma-
jority of studies chose in the bare soil region as a study area to reduce
the influence of vegetation and to extract the altered minerals. On the
other hand, the geobotanical anomalies are so weak information that is
difficult to distinguish, and the band range of the red edge is rarely
involved in the satellite data. Therefore Sentinel-2 data can be used to
extract the altered vegetation. Through analyzing the diagnostic spec-
tral characteristics of the vegetation in the CBM enrichment region, the
changes of yellow edge slope and red edge location and slope were
outstanding, providing a rating of 39% with the reference spectra. The
distribution of altered vegetation based on the red edge slope was
mainly in the central image and coincided with Hudi coal mining area,
which was mining the CBM.

The full spectral profile matching methods (i.e., MT, SFF, and SAM)
were applied for Hyperion data to extract the alteration on the basis of
VNIR-SWIR bands. For each technique used, the difference in the
quality of the results did not exceed 10%. The optimum results were
obtained by using the full spectral profile matching methods, that is,
those more restrictive than the selected reference spectra. The diag-
nostic spectral characteristics of alteration anomaly information in the

Table 5
Statistic results of the diagnostic spectral characteristics of altered vegetation.
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Fig. 9. Extraction results of the clay mineral are denoted in
blue. (a) Band math (band 11 / 12); (b) PCA (band 3, 8, 11
and 12).
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CBM enrichment can easily be described by hyperspectral remote sen-
sing. Hence, the total accuracy of the extraction result by the Hyperion
data reached 78.30%, which was slightly greater than the Sentinel-2
data obtained through XRD analysis. However, the bad line, stripe,
noise and swath of Hyperion data limit the application.

The advantage of Sentinel-2 data with respect to Hyperion data is
the 290 km wide swath, which provides a large-scale and rapid method
to observe the earth’s surface. Furthermore, the processing steps, in-
cluding the band math and PCA methods, are easy and effective.
Moreover, the processing works are inexpensive and can be done in-
doors, unlike seismic exploration and drilling. Consequently, the al-
teration extraction using Sentinel-2 data possesses the following ad-
vantages: high efficiency, agility, low cost, and the ability cover a large
area. Although the techniques presented the alteration extraction re-
sults of the micro-seepages in association with spectral analysis
methods for CBM enrichment prospecting, micro-seepage can be con-
trolled by structure and drainage and the distribution of alteration ex-
traction results are not necessarily correlated with the regions with high
gas content. Furthermore, we cannot be sure that the mineral altera-
tions over CBM reservoirs in this study area were only caused by CBM
seepage to the ground surface because of more than one explanation for
the results in remote sensing geology. It requires more experiments to

Vegetation spectral characteristics Blue edge Yellow edge Red edge
A/nm R Slope A/nm R Slope A/nm R Slope
Corn canopy Reference 523 0.088 0.541 569 0.115 —0.602 718 0.278 6.881
Sample 1 523 0.069 0.479 569 0.092 —0.471 715 0.205 5.531
Sample 2 522 0.058 0.404 569 0.076 —0.442 714 0.191 5.541
Sample 3 522 0.053 0.393 568 0.072 —0.427 700 0.140 5.600
Cocklebur canopy Reference 523 0.110 0.752 569 0.129 —0.627 718 0.379 10.116
Sample 523 0.113 0.595 568 0.129 —0.381 716 0.336 7.759
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(c) (d)

Fig. 10. Field photos in the study area. (a) Sample 3 of the corn canopy closed to CBM well No.3; (b) Sample 2 of the corn canopy near CBM well No.2; (c) Sample of the cocklebur canopy
closed to CBM well No.1; (d) Reference sample of the cocklebur canopy collected in the Jiafeng town far away CBM well.

investigate that there are similar surface mineral characteristics in more
CBM enrichment areas. The subsequent prospection, such as core ana-
lysis and well-test analysis, are essential for further confirmation of
commercial CBM exploitation (Zhang et al., 2015; Zhen et al., 2016).

7. Conclusions

In this paper, the alteration information was extracted from the
CBM enrichment region using Sentinel-2 data. The following conclu-

sions were obtained:

1) The alteration information, including the irons, clays, and altered
vegetation was successfully extracted using Sentinel-2 data. The
distribution of iron and clay minerals exhibited good accuracy
(78.33% and 76.67%) when using XRD analysis. The distribution of
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altered vegetation was basically consistent with Hudi coal mining
area in Jincheng, Shanxi province. These results demonstrate that
Sentinel-2 data have an alteration mapping ability and can be used
to identify the alteration anomaly region.

2) In the bare soil region, the iron and clay minerals were extracted by
band math and PCA methods. The band 11 ratio band 8a was the
most suitable method to extract the iron minerals, whereas the PCA
method was more appropriate than band 11 ratio band 12 for the
clay mineral extraction. In addition, the results of Sentinel-2 data
were relatively consistent with Hyperion data, particularly in the
central image. However, the carbonate minerals were difficult to
extract because of insufficient SWIR bands.

3) The diagnostic spectral features of the altered vegetation in the CBM
enrichment were calculated in the vegetation region. The yellow
edge slope, red edge slope and location were the most outstanding

Fig. 11. (a) Red edge linear fitting; (b) Yellow edge linear
112°40'E fitting; (c). Blue edge linear fitting; (d) Extraction results of
¥ altered vegetation based on red edge slope are denoted in
green.
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Fig. 12. (a) Distribution of alteration anomalies using the
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Table 6 Furthermore, the universality and generalizability of the methods need

Accuracy assessment of the altered mineral extraction results through XRD analysis.

Methods Class Producer’s User’s Overall Kappa
accuracy/% accuracy/% accuracy/%

Band math Clay 79.31 76.67 78.33 0.567
minerals
Iron 72.41 70.00 71.67 0.433
minerals

PCA Clay 75.86 73.33 75.00 0.500
minerals
Iron 70.97 78.57 76.67 0.518
minerals

characteristics. In particular, the highest rate of the feature edge
slope reached up to 39% with reference spectrum, which provided
an interesting direction for future research. Thus, analyzing the
feature edge slope of vegetation is necessary to identify and distin-
guish the altered vegetation.

4) The potential geological application of Sentinel-2 data was illu-
strated to identify the direction of CBM exploration through a large-
scale, highly efficient, agile and inexpensive way. This is also the
most significant conclusion reached by this study.

On the other hand, further research on the potential geological
application of Sentinel-2 data is necessary to pursue and will be sig-
nificant in the future. The diagnostic spectral features of altered vege-
tation can be used to clarify and support the weak information.
Moreover, the results of altered vegetation technically lack laboratory
validation. The field samples only covered a part of the study area; thus,
more field samples will be collected in the entire study area to verify the
accuracy in the future works. Besides, the geochemical analysis (e.g.,
isotopic tracer) is required in the future work to finally demonstrate the
alteration minerals caused by CBM seepages in the study area.
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further verification. In general, the multi-source data integration will
inevitably become trend for geology exploration in the future.
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ABSTRACT

Remote sensing inversion of heavy metal in vegetation leaves is generally based on the physiological
characteristics of vegetation spectrum under heavy metal stress, and empirical models with vegetation
indices are established to inverse the heavy metal content of vegetation leaves. However, the research of
inversion of heavy metal content in vegetation-covered soil is still rare. In this study, Pulang is chosen as
study area. The regression model of a typical heavy metal element, copper (Cu), is established with
vegetation indices. We mainly investigate the inversion accuracies of Cu element in vegetation-covered
soil by different vegetation indices according to specific spectral resolutions of ASD (Analytical Spectral
Device) and Hyperion data. The inversion results of soil copper content in the vegetation-covered arca
shows a good accuracy, and the vegetation indices under ASD spectral resolution correspond to better

results.

Key words: vegetation index; soil copper content; spectral resolution; inversion accuracy

1. INTRODUCTION

With developments of high spectral technology and demands of the national economy for resources,
hyperspectral has become one of the state of the art technologies of mineral resource exploration,
achieving good application results. Thanks to the advantages of continuous spectral curves and nanoscale
spectral resolution, with vegetation spectrum and its derivations, hyperspectral data can be used to
determine whether mineral element information in the vegetation-covered area is abnormal, and to obtain
regional distribution of geochemical information. It provides unique indicative information for mineral
resource investigation, and thus has a wide application prospect in geological prospecting over
vegetation-covered area. Generally, the common remote sensing inversion methods of heavy metal in
vegetation leaves are on the basis of physiological characteristics of the estimated vegetation spectrum
under heavy metal stress, and empirical models with vegetation indices are established to inverse the
heavy metal content of vegetation leaves. However, the inversion research of heavy metal content in

vegetation-covered soil is still rare. In this study, the regression model of a typical heavy metal element,
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copper (Cu), is established based on vegetation indices. Then the soil copper content in
vegetation-covered arca obtained by using ASD (Analytical Spectral Device) and Hyperion
hyperspectral data, respectively, are compared so as to provide a more appropriate selection of spectral

resolution for the inversion of Cu element.

2. METHODOLOGY

2.1 Study areas and data

2.1.1 Study areas

In this study, Pulang, Yunan Province is chosen as the study area. The Pulang porphyry copper deposit is
located in the "Sanjiang" tectonic magmatic ore belt in the southwest of China, which is a typical
Indosinian porphyry copper deposit in the Geshan area. In the study area, 22 vegetation samples and 22
soil samples are collected. The copper content and chlorophyll content in the soil are determined by
laboratory measurements.

2.1.2 Data

In this study, FieldSpec Pro FR spectrometer of ASD (Analytical Spectral Device) is used to measure
spectra of vegetation leaves. The spectral range of ASD is 350 ~ 2500 nm and the spectral data is
resampled to Inm.

The Hyperion sensor aboard on EO-1 satellite platform launched in November 2000, is the first satellite
digital imaging spectrometer, which contains 242 spectral bands, ranging from 355 to 2577 nm, with the
spatial resolution of 30 meters. The ASD spectrum is resampled according to the Hyperion spectral
response function. To analyze the influence caused by different spectral resolution, we compare the
inversion results of original ASD spectrum and the resampled spectrum.

2.2 Methods

In this paper, we mainly investigate the inversion accuracies of soil Cu element in vegetation-covered
area by employing different vegetation indices according to the specific spectral resolutions of ASD and
Hyperion data. The major steps of the method are as follows and Figure 1 shows the whole method

scheme.

(1) Spectral resampling. The ASD spectral data is resampled according to spectral response function of
Hyperion data.

(2) Calculation of the spectral indices shown in Table 2-1. The vegetation indices are calculated under
the spectral resolutions of ASD and Hyperion data, respectively.

(3) Vegetation index selection. Taking the impacts of heavy metal stress on chlorophyll into account, the
correlations between vegetation indices and chlorophyll content are analyzed, and the indices with
correlation larger than 0.55 are selected as preference.
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(4) The vegetation indices calculated by ASD data and by the resampled spectrum are used as
independent variables, to establish a multiple regression model, including partial least squares (PLS)
analysis and support vector machine (SVM) model, with 80% of the measured soil copper content.

(5) Accuracy assessment. The inversed copper content from different spectral resolutions are statistically
analyzed with the measured values, to obtain the inversion accuracies under different situations.

Pulang Sample Points ASD Spectrum

|

‘ HyperionImage Resampling |

I

Sample Spectrum of ASD Spectral | Sample Spectrum of Hyperion Spectral |

Calculate the First Derivative,
Derivative Logarithm

| Vegetation Index | Spectral Matrix |

l |

| Correlation with Chlorophyll Calculations | Correlation with Copper Element Calculations |
| Screened V egetation Index l———| Screened Vegetation Spectra |

’ PLS/SVM l

I

‘ Accuracy Verification |

Figure 1. The methodology scheme of this study
2.2.1 Vegetation index

The vegetation spectral indices, which are sensitive to chlorophyll, are investigated taking the vegetation
stress into account, and 64 different vegetation spectral index according to literatures (see Table 1) are
tested. These spectral indices are modeled at different spectral resolutions.

Table 1. VI (Vegetation index) used in this study

No. | VI Calculation formula References
1 BGI1 BGI1=R400/R550

BGI2 BGI2=R450/R550
2 & g R Zarco-Tejada, et al. 2005
3 BRIl BRI1=R400/R690
4 BRI2 BRI2=R450/R690
5 Clgreen Clgreen=R800/R750-1 Gitelson, ef a/.2005
6 Clrededge ClIrededge=R750/R710-1 Gitelson, ef a/.2005
7 DCNI ]0) JS)I\I)I;)(R7 20-R700)/(R700-R670)/(R720-R67 Chen, ef al., 1995
8 GreenNDVI GreenNDVI=(R750-R550)/(R750+R550) Gitelson,1994
9 HI HI=(R534-R698)/(R534+R698)-R704/2 Mahlein, et al. 2013
10 LCI LCI=(R850-R710)/(R850+R680) Le Maire, et al.2004
11 MCARI MCARI=R700-R670-0.2*(R700-R550)*(R70 | Daughtry,2000
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0/R670)

MTVI2=1.5*%(1.2*(R800-R550)-2.5*(R670-R

12 | MCARUMTVI2 | 550))/sqrt((2*R800+1)*2-(6*R800-5*sqrt(R6 | Eitel, et al. 2007
70))-0.5)

13 | MCARI OSAVI | MCARI OSAVI=MCARI/OSAVI Fitel, ef al.2007
MCARI2=[1.5*(2.5*(R800-R670)-1 3*(R800-

14 | MCARD2 R550))]/[sqrt((2*R800+1)"2-(6*R800-5*sqrt( | Haboudane. ef al. 2004
R670))-0.5)]

=, sk +1 - % +1)Y\D-8% .

15 | Msavi 1(\1&58‘3&6(%;)17280() 1SGREREDITI28™ | 51 erarigoy

16| MSR705 MSR705=(R750-R445)/(R705-R453) Sims & Gamon,2002

17 | MTCI MTCI=(R750-R710)/(R710-R680) Jadundan, et al 2004

A — 15\/([)";")VI=1.2*(1.2*(R800-R550)-2.5*(R670-R5 eibondane: a1 272004

19 | NDPI NDPI=(R680-R430)/(R680-+R430) Penuelas, ef al. 1995

20 | NDVI(gb) NDVI(g-b)=(R575-R440)/(R575+R440) Hansen, ef al.2003

21 | NDVI3 NDVI3=(R800-R670)/(R800+R670) Rouse, ef al. 1974

22 | NPCI NPCI=(R680-R430)/(R680+R430) Pefiuelas, ef al. 1993

23 | NPQI NPQI=(R415-R435)/(R415+R435) Barnes,et al. 1992

24 | NRI NRI=(R560-R670)/(R560+R670) Schlcicher,2001

25 | OSAVI OSAVI=1.16(R800-R670)(R800+R670+0.16) | Rondeaux. e al. 1996

26 | Pl PI=(R750-R705)/(R750+R705) Gitelson, 1994

27 | P2 PI2=(R780-R550)/(R780+R550) Gitelson, 1994

28 | PPR PPR=(R550-R450)/(R550+R450) Jacquemoud, 1994

29 | PRI PRI=R675*R690/(R683)"2 Meroni, ef al.2009

30 | PRIO PRIO=(R570-R531)/(R570+R531)

31 | PRII PRII=(R550-R531)/(R550+R531)

32 | PRI2 PRI2=R750/R800

33 | PRI3 PRI3=R685/R655

34 | PRI4 PRI4=R630/R630

35 | PRI5 PRI5=(R685)"2/R675*R690 Gamon, 1992

36 | PRI6 PRI6G=difT(R688)*diff(R710)/diff((R697))"2

37 | PRI7 PRI7=diff(R705)/dif{(R722)

38 | PRIS PRIS=diff(R730)/dif{(R706)

39 | PRI9 PRI9=R690/R600

40 | PSDNa PSDNa=(R800-R680)/(R800-+R630)

41 | PSDNb PSDNb=(R800-R635)/(R800-R635) Blackburn, 1998

42 | PSDNc PSDNc=(R800-R470)/(R800-+R470)

43 | PSSRa PSSRa=R800/R675

44 | PSSRD PSSRb=R800/R650 Slaskburt, 2 ol 12958

45 | R515 R570 R515_R570=R515/R570

46 | R515 R670 R515_R670=R515/R670 Zarco-Tejada, et al. 2012

47 | R520 R500 R520_R500=R520/R500

48 | RDVI RDVI=(R800-R670)/sqri(R800+R670) Roujean & Breon. 1995

49 | RM R-M=R750/R720-1 Gitelson, ef al 1975

50 | RVII RVI I=R810/R660 Zhu, ef al 2008

51 |RVI O RVI TI=R801/R560 Xue, et al 2004
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52 SI SI=(R774-R677)/(R774+R677) Zarco-Tejada, et al. 2009

53 SIPI SIPI=(R800-R445)/(R800-R550) Penuelas, ef al.,1995

54 SIPI2 SIP12=(R445-R800)/(R445+R550) Pefiuelas & Filella ,1998

55 SR SR=R750/R550 Gitelson,1994

56 SR2 SR2=R750/R710 Zarco-Tejada, et al. 2004

57 SR705 SR705=R750/R705 Sims & Gamon,2002

58 SRI SRI=R801/R670 Deering,et al.,1975
TCARI=3*((R700-R670)-0.2*(R700-R550)*

20 HCARL R700/R670§§ ) ( " Haboudane, ef a/.,2002

60 [ TCARI OSAVI TCARI OSAVI=TCARI/ OSAVI

61 TCARI_MSAVI | TCARI_OSAVI=TCARI/MSAVI

TVI=0.5*%(120*(R750-R550)-200*(R670-R55

62 | TVI 0) Broge & Leblanc,2001
63 [ Viopt Viopt=1.45*(R800"2+1)/(R670+0.45) Reyniers, et al.,2006
64 | VOG4 vogd=diff(R715)/diff(R705) Zarco-Tejada, ef a/.1999

2.2.2 Regression model
2.2.2.1 Partial Least Squares (PLS) method Regression Model

PLS is a multivariate analysis method developed in recent decades. It is able to achieve regression
modeling (multiple linear regression), data structure simplification (principal component analysis), and
correlation analysis between two variable sets (typical correlation analysis) to solve the problem of

multiple collinearity between variables.
PLS regression has the advantages including:

(1) Carrying out regression modeling even if independent variables have serious multiple correlations.
(2) Allowing regression modeling when the number of sample points is less than variables.

(3) Containing all of the original independent variables in the final model.

(4) Making it easier to identify system information and noise (even some non-random noise).

(5) The regression coefficients of each independent variable are easy to be interpreted.
2.2.2.2 Support Vector Machine (SVM) Regression Model

SVM is a supervised approach, widely used in statistical classification and regression analysis. It is an
excellent way to realize the idea of structural risk minimization. Its machine learning strategy is the
principle of structural risk minimization, and in order to minimize the expected risk, the experience risk

and confidence range should be minimized at the same time.

SVM is a novel small sample learning method with solid theoretical basis. It is basically not involved in
the probability measure and the law of large numbers, so it is different from the existing statistical
methods. In essence, it avoids the traditional process from induction to deduction, and achieves efficient.

The final decision function of SVM is determined by a small number of support vectors, and the
computational complexity depends on the number of support vectors, not the dimension of the sample

space, which in some sense avoids the "dimensionality disaster".
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In this study, we mainly utilize the partial least square method in the inversion model of soil copper
content in vegetation-covered arca

2.2.3 Accuracy verification

In this study, 80% of the samples are randomly selected as training samples for the least square method,
and the rest 20% are used to verify the accuracy of the model. Meanwhile the accuracy verification of
SVM model is based on cross validation. Cross validation is primarily used for modeling applications. In
a given modeling sample, we should take out most of the samples to build models, leave a small number
of samples with the newly established model to predict, calculate the prediction error of this small
samples, and record their squared sums. This process has been carried out until all the samples have been
predicted once and only once. But Leave-One-Out is a special cross validation method, that is, leaving
only one sample for verification, and the remaining samples are for modeling.

3. RESULT

The results show that the vegetation indices calculated by the ASD data and the resampled data both have
good inversion results for the soil copper element. The goodness of fit of PLS model with the resampled
data is above 0.9, and those with ASD is a little better, ~ 0.9455. We use the remaining 20% of the sample
data as preliminary validation of inversions at different spectral resolutions. Using the ASD data, the
correlation coefficient between the copper content and the measured value is 0.8753 and the average
relative error is 3.4%. The correlation coefficient between the copper content and the measured value is
estimated to be 0.7862 using the resampled data, and the average relative error is 4%, respectively.
Prediction of soil copper content and actual soil copper content comparison are shown in Figure 2. The
sum of squared errors of SVM fitting model with ASD data is 12.988, and that with the resampled data is
43.864. So the result of ASD spectral resolution has a better fitting effect.

Prediction of Copper Content in Soil

250 -

200 JPQ

Copper Content(pg/g)
8

100 -

50 -
Vi Vs J
7 Al

Sample Number

Figure 2. Prediction of Copper Content in Soil
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ABSTRACT

In this study, we compared four different water extraction methods with GF-1 data according to different
water types in Tibet, including Support Vector Machine (SVM), Principal Component Analysis (PCA),
Decision Tree Classifier based on False Normalized Difference Water Index (FNDWI-DTC), and
PCA-SVM. The results show that all of the four methods can extract large arca water body, but only
SVM and PCA-SVM can obtain satisfying extraction results for small size water body. The methods
were evaluated by both overall accuracy (OAA) and Kappa coefficient (KC). The OAA of PCA-SVM,
SVM, FNDWI-DTC, PCA are 96.68%, 94.23%, 93.99%, 93.01%, and the KCs are 0.9308, 0.8995,
0.8962, 0.8842, respectively, in consistent with visual inspection. In summary, SVM is better for narrow
rivers extraction and PCA-SVM is suitable for water extraction of various types. As for dark blue lakes,

the methods using PCA can extract more quickly and accurately.

Key words: Tibet; water extraction; GF-1 data

1. INTRODUCTION

Water resource plays a key role in Tibet. For example, local farms, pasture lands, and electric power
generation are all in great need of water resource. The distribution of water resource is also part of the
basic data of hydrological model. Therefore, it is necessary to monitor the water resource in Tibet.
Satellite remote sensing, as a high-tech approach developed in recent decades, is able to not only identify
the distribution of water resource quickly and accurately, but also save a lot of manpower and material

resources especially for some dangerous areas.

GF-1 is equipped with two scanners of 2m resolution panchromatic and 8m resolution and 4
multispectral scanners of 16m resolution launched by China in 2013. At present, domestic and foreign
scholars have conducted lots of research on water resource monitoring using GF-1 data and obtained
reliable results [1-3]. Ke ef al. proposed that PCA (Principal Component Analysis) method, compared to
other water extraction methods, could reach to more accurate water boundary extraction [1]. Li ef al.

obtained small rivers in hilly areas information and effectively eliminated the interference of shadows
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and salt and pepper phenomenon by MRMAS (Modified Ratio of Mean Difference to Neighbors (ABS)
to Standard Deviation) [4]. Chen ef a/. found that snow and bare soil could be eliminated by using DTC
to extract water body in mountainous area effectively [5]. Huang et al. used object-oriented classification
to avoid salt and pepper noise and patch fragmentation [6]. Wang ef al. used improved SWI (Shade

Water Index) to extract water body and obtained good results in arid area [7].

There are different types of water resource in Tibet, including saltwater lake, freshwater lake, permanent
stream, ephemeral stream, and glacier and so on. However, how to choose an appropriate way to extract
water information of different types still needs further study. In this study, we compare different methods
of water information extraction using GF-1 satellite image and analyze the performances of different

methods for each type of water body.

2. DATA

2.1 Data resource

GF-1 satellite that launched on April 26, 2013 is the first high resolution earth observing satellite of
China, the height of the sun-synchronous recursive orbit is 645 km. Based on the high temporal
resolution (revisit cycle of four days) and high spatial resolution (up to 2 m), GF-1 shows great potential
in observing the earth. In this study, we selected the fusion images from panchromatic images of 2 m and

multi-spectral images of 8 m as the main data. The multi-spectral image consists of four bands of blue,
green, red and near infrared (0.45-0.52um, 0.52-0.59pum, 0.63-0.69um, 0.77-0.89um). All of the

images are cloudless and well qualified.

2.2 Study area

The study area, located in Tibet, is part of the south-west China plateau with an average elevation of 4650
m and is about 18.15 kilometers northwest of the Bam Co (90°17'30"~90°21'30"E,
31°19'30"~31°22'00"N). Because of the wide distribution of lakes and the complicated water types, this

study area is the key region of remote sensing investigation.

3. METHODOLOGY

We compared SVM (Support Vector Machine), PCA (Principal Component Analysis), FNDWI -DTC
(False Normalized Difference Water Index - Decision Tree Classification) and PCA-SVM (Principal
Component Analysis - Support Vector Machine) to analyze the extraction results of different water body

types.
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3.1 Data pre-processing

Based on ENVI software, the pre-processing of GF-1 satellite images includes the following steps. First,
we calibrate the radiometric by using the coefficients of gain and offset. Then, we perform the
atmosphere calibration with the FLAASH (Fast Line-of-sight Atmospheric Analysis of Hypercubes)
model. In this step, the model is set as Mid-Latitude Summer according to the imaging time of the data.
Next, the orthographic correction is performed. We uses the defaulted GMTED2010 data as DEM
(Digital Elevation Model) data. The pixel size and resampling method are set to 8m and Bilinear. Last but
not the least, we operate the automatic registration and use panchromatic image as base image to adjust
the multispectral image. 160 control points are generated and the root-mean-square error is limited

within 0.5 pixels.

Before the water information extraction, image fusion is performed by using Gram-Schmidt spectral

sharpening, and the resampling method is set as cubic convolution.
3.2PCA

The purpose of PCA is to fetch the appropriate information from different spectral bands. This method
eliminates the redundant information within the bands. The principal components are linear
combinations of the eigenvectors of the covariance matrices of each band weighed by coefficients. We
calculate the covariance matrix of each band, and then calculate the eigenvalues and eigenvectors of the
covariance matrix. Assuming that the image has » bands, and Ap represents the P-band eigenvalues (P =
1, 2, 3 ... n), the percentage of the total variance of the original data contained in each principal

component can be expressed as:

n
%, = (2, x100)/3 4, (1)
=1
The a, represents the eigenvector between the k- band and the p-band main component, and the

correlation coefficient Ry, between the k-band and the p-band main component can be expressed as:

R, = (akp % \//Tp)/\/a )

Where V. represents the variance of k-band.

The comparison of the four single principal components is shown in Figure 1, and it can be seen that PC1
image could enhance water information well. The rest of the images cannot or can only enhance a certain
type of water body. Hence, we set a threshold to extract water information by using PC1 image (Figure
1). The optimal threshold for water body extraction is set based on the histograms of water and non-water
samples. The gray value range of water is from -3214 to -224 while that of non-water is from -750~4217,
might causing a confusion within -750~ -224. The experimental results indicate that when the critical
value is set as -700, the extraction effect is the best (Figure 2).
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PC1 PC2 PC3 PC4
Figl.The result of PCA

3.3SVM

As one of the machine learning algorithms, SVM has the advantages of small quantity of training
samples, no need of data dimension reduction, as well as accurate and fast classification and recognition.
The method can not only extraction water information, but also obtain the classification results of all

interested land cover types.

The basic theory is to use the optimal classification hyperplane to accurately separate the objects and
ensure the maximum separation interval. Finding the optimal hyperplane is actually an optimization
problem. The Lagrange function can be used to turn the original optimization problem into a dual

optimization problem. The formula can be expressed as:

k

k k
i) = Y'or —= 3 aaryifOix) ®

i=1 i=1j=1

k
Z}’iai =00, 20,7 =12--,k @
i=1

Where K(xux;) is a kernel function, which can map the feature space to high-dimensional space.

Roli et al. found that radical basis function (RBF) kernel was more suitable than polynomials and
S-shaped function and had good ability of filtering noise and anti-interference [8]. Therefore, RBF is
chosen in this study. We select six types of samples (grassland(A), saline soil(B), rivers(C), sky-blue
lakes(D), green lakes(E), blue-grey lakes(F)), compute the separability to evaluate the sample quality,

and then use SVM to perform the classification.

Tablel. Number of sample in six land types

Type A B C D E F
Sample size 61 50 55 10 33 24
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3.4 FNDWI-DTC

Compared with other algorithms, DTC has the advantages of clear structure and fast operation.
Considering the flexibility of data processing, this study select a decision tree algorithm based on
artificial prior knowledge, and combine FNDWI index with the original band to extract water

information.

The FNDWI index proposed by Zhou ef al. is to use brightness value of infrared band to modify green

band [9]. The false green band formula is shown below.
FGreen = Green + S(CNIR — NIR) 5)

Both S and CNIR are constants(S determines the magnitude of the correction, CNIR determines the
threshold boundary of water and grassland). Based on near-infrared band and the modified green band,
the FNDWI can be calculated as shown below.

FNDWT = (FGreen — NIR) /(F6reen + NIR) ©)

There are six types of land cover in the image. When FNDWTI is set greater than 11500, most of water
could be separated from grassland and saline land (Fig3). We use B; band to separate the saline land from
narrow rivers and grass land (Fig4). And we extract the narrow rivers from grass land by using B;_; band,
which is calculated as the sum of B;, B, and B;, with the threshold set as 4315 (Fig5).

Fig3. Histogram for water and non-water in

FNDWI band

1000 1500

DN

Fig4. Histogram for saline land and non-saline land in Fig5. Histogram for narrow rivers and glass land in

B, band Bis
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3.5 PCA-SVM

The classification result of SVM could show differences of various water types, but the accuracy is not
satisfying. PCA could highlight differences between water types. So we combine the two methods to

improve the extraction accuracy of different water types.

J-M (Jeffreys-Matusita) distance can evaluate the separability of samples. The samples with J-M distance
greater than 1.9 are supposed to have good separability. The following table shows that the separability is
improved by using PCA transform. And nearly half of the J-M distances have increased, implying better
separability (Table2). In the SVM classification, we set radial basis function as kernel function and leave

the rest of the parameters as default values.

Table2. J-M distance matrix of six land types

A-B A-C A-D A-E A-F B-C B-D B-E

original bands 1.95 1.95 1.99 2.00 2.00 1.99 1.97 1.98

PCA 1.96 1.98 1.99 2.00 2.00 1.99 1.99 1.99
B-F C-D C-E C-F D-E D-F E-F
original bands 1.99 1.98 1.92 1.96 1.85 1.96 1.65
PCA 1.99 1.99 1.95 1.97 1.85 1.96 1.70

Note: A- Grassland, B-Saline Base, C-River, D-Sky Blue Lake, E-Green Lake, F-Blue Gray Lake

4. RESULTS

Figure 6 shows that all of these four methods can extract water body of large arca. PCA-SVM is the best
method to extract water bodies containing various types, and SVM and FNDWI-DTC are better for
narrow river extraction. As for dark blue lakes, PCA can extract them quickly and accurately. As shown
in Table 3, the accuracy of the PCA-SVM method is the highest, followed by SVM and FNDWI-DTC,
and PCA obtains the lowest accuracy. Compared with other methods, the omission rate of FNDWI-DTC
is a little higher. SVM could extract the rivers with more detailed information, while PCA improves the
precision for dark blue water extraction, and both of the two methods could extract green water very well.
As shown in the results, the combination of PCA and SVM presented in this study can reduce
classification errors caused by wetlands, making the PCA-SVM method a simple yet effective method of

water extraction.
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GF-1 image The actual distribution of water bodies (a) SVM

(b) PCA (c) FNDWI-DTC (d) PCA-SVM

Fig.6 Water extraction results of different methods

Table3. Water extraction accuracy of different methods

Overall accuracy Kappa

PCA 93.01% 0.8842

SVM 94.23% 0.8995

FNDWI-DTC 93.99% 0.8962

PCA-SVM 96.68% 0.9308
S. CONCLUSIONS

In this study, different water extraction methods were compared according to different water types in
Tibet. Based on GF-1 satellite images over Bam Co region, the extraction performances of water body in
Tibet by different method were compared and evaluated, including SVM, PCA, FNDWI-DTC and
PCA-SVM. The results showed that all the four methods could obtain good results but each had its own
appropriate scenarios. Besides, how to extract water body of different types together and to achieve
higher accuracy should be investigated more in future, which can provide supports for water resource

research in Tibet.
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Abstract—To explore the application of Gaofen-5’s thermal
infrared (TIR) data, algorithm development and validations needs
to be conducted before its launch; and image simulation is
necessary to provide datasets for such research. In this paper,
using ASTER imagery as the data source, a simulation method is
proposed for Gaofen-5’s four TIR bands’ emissivity images. For
the first 3 bands, emissivity images are generated through
translation models built on spectral correlation between emissivity
of Gaofen-5 bands and those of ASTER bands. For the 4" TIR
band of Gaofen-5, we propose a spectral matching and spectral
mixing method for emissivity image generation. To test the
feasibility of our simulation method, ASTER thermal infrared
emissivities are simulated and then compared with their actual
values. Average relative errors of these simulated emissivities are
4.04%,2.98%,1.74%, -4.02% and -2.79% in S ASTER TIR bands,
indicating that our proposed method can be used for emissivity
image generation.

Keywords—Gaofen-5, surface emissivity, image simulation,
ASTER

1. INTRODUCTION

The Gaofen-5 (GF-5) satellite is the fifth flight unit in China
High-resolution Earth Observation System (CHEOS). It carries
six payloads and has been launched on March 9, 2018. In
CHEOS, GF-5 is the only one that provides a thermal infrared
(TIR) payload, which has four channels centered at 8.20 (8.01—
8.39 pm), 8.63 (8.42-8.83 um), 10.80 (10.30-11.30 pm), and
11.95 pm (11.40-12.50 pm) [1]. In addition, all these four
channels have a spatial resolution of 40m, which is much higher
than that of previous launched satellites (e.g., ASTER (90m),
Landsat 8 (100m)). With such specifications, we see its potential
of being used for land observation applications such as
environmental protection and natural resources exploration,
combined with its visible to short-wave infrared images, as well
as GF-5’s hyperspectral images. As such, it is necessary to

conduct researches regarding its data processing and application.

Actual GF-5’s thermal infrared data is unavailable before
launch, simulated imagery is therefore required for purpose of
algorithm development and validation. The at-sensor radiance
(L§E5€5°T) in thermal infrared region for a given wavelength
() can be calculated according to radiative transfer equation as
following:

978-1-5386-6642-5/18/$31.00 ©2018 IEEE

404

Chenchao Xiao
China Aero Geophysical Survey and Remote Sensing Center
for Land and Resources
Beijing, China
Xcc_surpass@qq.com

Jat=sensor
A

(M

where €, is the surface emissivity, T, is the total transmissivity
of atmosphere on the upwelling radiative transfer path, Lﬁtml
and LﬁtmT are downwelling and upwelling atmospheric radiance
respectively, B(4, Ty) is the radiance emitted by a blackbody at
temperature Tg and it’s defined by Planck’s law. From (1) we
know that simulating thermal infrared radiance requires surface
emissivity and temperature, as well as atmospheric parameters
(i.e., Ty, L3™ and L$™"). To use existing remote sensing
imagery as the simulation data source, the surface temperature
image can be retrieved using LST retrieval algorithms [2].
Meanwhile, atmospheric parameters can be accurately
calculated from radiative transfer code (such as MODTRAN
[3]). Thus, the focus of image simulation for GF-5’s TIR bands
is the corresponding emissivity image generation. In this paper,
we propose a simulation method for generating GF-5’s TIR
emissivity images using ASTER imagery as our data source.

[e2BA, Ty) + (1 — ) LE™ ], + Lg™

II. APPROACH

A. Data source selection

We choose ASTER as the data source of image simulation,
mainly because it has similar spatial resolution and spectral
ranges (see Fig. 1) as Gaofen-5’s TIR bands. ASTER has 14
bands: 4 visible to near-infrared (VNIR) bands, 5 short-wave
infrared (SWIR) bands, and 5 thermal infrared bands. Detailed
ASTER satellite sensor specifications are given in Table I.

TABLE L. ASTER SATELLITE SENSOR SPECIFICATIONS

Band Spectral Range (nm) | Spatial Resolution (m)
Band1 0.52~0.60
Band2 0.63~0.69 15

VNIR
Band3 0.76~0.86
Band4 1.60~1.70 30
Band5 2.145~2.185
Band6 2.185~2.225

SWIR 30
Band7 2.235~2.285
Band8 2.295~2.365




Band9 2.36~2.43
Band10 8.125~8.475
Bandl11 8.475~8.825
TIR Band12 8.925~9.275 90
Band13 10.25~10.95
Band14 10.95~11.65
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Fig. 1. Spectral response functions of GF-5’s (TIR1-4) and ASTER’s (A10-
14) thermal infrared bands.

B. Simulation method

First, as revealed in Fig. 1, TIR band ranges are similar
between ASTER and GF-5; therefore, we consider to simulate
GF-5’s TIR emissivity image based on their spectral correlation
with surface emissivity in ASTER’s TIR bands. To conduct this
correlation analysis, 149 spectra from JHU (Johns Hopkins
University) [4] spectral library and 85 spectra from ASU
(Arizona State University) spectral library [5] are used.

Through correlation analysis using these spectra, we found
that emissivities in GF-5’s first three TIR bands has a linear
correlation with ASTER’s bands, as displayed in Fig. 2.
Specifically, band TIR1-3 has the highest correlation with
ASTER band 10, band 11, and band 13, respectively; and the
coefficient of determination (R?) are all higher than 0.95. This
shows that TIR1-3 emissivity images can be then generated
using translation models (i.e. equations in Fig. 2).
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Fig. 2. Correlation between emissivity of GF-5’s TIR bands and ASTER
bands.

However, correlation analysis also shows that emissivity in
GF-5’s fourth TIR band has no good correlation with any of
ASTER’s TIR bands. Therefore, we come up with a different
simulation strategy for TIR4 band emissivity using ASTER data.
Considering that ASTER has 14 bands covering visible to
thermal infrared range, we use spectral matching and spectral
mixing to perform the simulation, which has four steps. First,
pure pixels in the ASTER reflectance/emissivity image are
selected to extract endmember spectra. Second, spectral
matching is performed between extracted endmembers on the
image and materials from spectral library. Those spectral library
materials (referred as surface endmembers) that are most similar
to image endmembers are then used as endmember for
abundance inversion on ASTER’s reflectance/emissivity images.
Third, abundance maps are retrieved based on linear spectral
unmixing model. Finally, with spectral emissivity in four TIR
channels of surface endmembers and abundance maps, spectra
are mixed to generate Gaofen-5’s TIR band emissivity images.
To achieve simulation using this method, measured spectra from
spectral library has to cover the spectral range of both the data
source (i.e. all ASTER’s bands) and the simulated payload (i.e.
GF-5’s TIR4 bands).

III. EXPERIMENTS AND RESULTS

A. Experiment Data

ASTER data used in the simulation experiment was
collected on September 27, 2004, and the ground area is located
in the north of Liuyuan Town, Gansu Province.

B. Data preprocessing

Atmospheric correction should be conducted on ASTER’s
radiance data to retrieve reflectance image in band 1-9, as well
as emissivity images in band 10-14. For band 1-9, atmospheric
correction was performed using FLAASH module in ENVI 5.2.
Emissivity images in band 10-14 was retrieved using the
Temperature Emissivity Separation (TES) algorithm [6]. As
reflectance images of band 8-9 has a number of invalid values,
only band 1-7 and band 9-14 images are then used for spectral
unmixing in the simulation for TIR4 emissivity image.



C. Simulation process

Using emissivity images of ASTER band 10, band 11, and
band 13, GF-5’s TIR1-3 emissivity images were generated
based on translation models built on spectral correlation analysis
displayed in Fig. 2. TIR4 emissivity image was then simulated
using the second method step by step. First, 4 endmembers were
determined on the image. Statistics shows that pixels consisting
of these 4 endmembers account for over 99% of the image.
Second, spectral angle matching was conducted between spectra
of JHU spectral library materials and that of 4 image
endmembers. JHU library materials with the highest cosine
which were also greater than 0.985 were selected as surface
endmembers. Third, spectral unmixing was performed on
ASTER’s reflectance and emissivity images (a total of 12 bands)
with selected surface endmembers, and abundance maps were
acquired. Finally, TIR4 band emissivity image was generated
from linear spectral mixing using abundance maps and TIR4
band emissivity spectra from surface endmembers. Simulated
emissivity images of GF-5’s TIR bands are shown in Fig. 3.

D. Accuracy analysis

Since true GF-5’s TIR emissivity data is unavailable,
accuracy analysis is performed to evaluate the feasibility of our
simulation method. Therefore, ASTER TIR emissivity for JHU
materials were simulated using method proposed here and
compared with their actual emissivity values. The average
relative errors (RE) were then calculated for five ASTER TIR
band emissivities. Average REs of the bands are 4.04%, 2.98%,
1.74%, -4.02% and -2.79%, indicating that simulated
emissivities are close to actual ones.

(b) TIR2 band
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AR
i
0.999

(d) TIR4 band
Fig. 3. Simulated emissivity images in GF-5’s TIR bands.

IV. CONCLUSION

In this paper, a simulation method is proposed for emissivity
image generation of Gaofen-5’s thermal infrared bands. ASTER
data is selected as the simulation source considering its similar
spatial and spectral resolution with GF-5’s TIR bands. As actual
GF-5 data has not been acquired yet, accuracy analysis has been
conducted for the simulation method, which is used for
simulating ASTER TIR band emissivity. Relative errors show
the proposed simulation method here is feasible for TIR
emissivity image generation.
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ABSTRACT:

Gaofen-5 carries six instruments aimed at various land and atmosphere applications, and it’s an important unit of China High-resolution
Earth Observation System. As Gaofen-5’s thermal infrared payload is similar to that of ASTER, which is widely used in mineral
exploration, application of Gaofen-5’s thermal infrared data is discussed regarding its capability in mineral classification and silica
content estimation. First, spectra of silicate, carbonate, sulfate minerals from a spectral library are used to conduct spectral feature
analysis on Gaofen-5’s thermal infrared emissivities. Spectral indices of band emissivities are proposed, and by setting thresholds of
these spectral indices, it can classify three types of minerals mentioned above. This classification method is tested on a simulated
Gaofen-5 emissivity image. With samples acquired from the study area, this method is proven to be feasible. Second, with band
emissivities of silicate and their silica content from the same spectral library, correlation models have been tried to be built for silica
content inversion. However, the highest correlation coefficient is merely 0.592, which is much lower than that of correlation model
built on ASTER thermal infrared emissivity. It can be concluded that GF-5’s thermal infrared data can be utilized in mineral

classification but not in silica content inversion.

1. INTRODUCTION

Gaofen-5 (GF-5) satellite is the fifth flight unit of China High-
resolution Earth Observation System (CHEOS) and will be
launched in 2018. GF-5 will be carrying six types of instruments,
including visible and short-wave infrared hyper-spectral camera,
spectral imager, greenhouse gas detector, atmospheric
environment infrared detector at very high spectral resolution,
differential absorption spectrometer for atmospheric trace gas,
and multi-angle polarization detector, with a designed lifespan of
8 years. Its thermal infrared (TIR) payload on the spectral imager
will collect land surface thermal emission in four channels, which
are centered at 8.20pm (TIR1), 8.63um (TIR2), 10.80pm (TIR3)
and 11.95um (TIR4) with a spatial resolution of 40 m (Ye et al.,
2017). Such spectral range settings are similar to the thermal
infrared bands of ASTER instrument (see Figure 1).

1.2

—Al10 —All —AL2 —Al3

TIR1 TIR2 TIR3 TIR4

AJA\ M ‘pfv\ h‘\ ﬁ\

I |

— A4

Response

10
wavelength(um)

Figure 1. Spectral response functions of GF-5 TIR (TIR1-4) and
ASTER TIR (A10-14) channels.

Previous research and applications show that ASTER TIR data
has been successfully used to delineate mineral zones and
assemblages of carbonate and silica (Kanlinowski et al., 2004).
Specifically, sulfate, carbonate, and silicate minerals can be
classified on ASTER images based on their difference of spectral
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features in thermal infrared bands (Ninomiya, et al., 2003). Also,
the content of silica in silicate minerals can be estimated using
ASTER TIR data; as silica is the main component of the earth's
crust, and its content is an important chemical parameter for the
classification of geological bodies and the analysis of its genetic
evolution. Therefore, we see potentials of GF-5’s thermal
infrared data applied in mineral exploration.

In this paper, the ability of mineral classification and silica
content estimation are analyzed using GF-5’s thermal infrared
bands, to prepare GF-5 thermal infrared data for possible
application in mineral information extraction.

2. STUDY AREA AND DATA
2.1 Study Area

The study area is located about 15km in the north of Liuyuan
Town, which is located in the northwestern Gansu Province of
China (see Figure 2). This area is in the Yujingzi and Liuyuan
intracontinental rift zone, which is a polymetallic metallogenic
belt that contains copper, gold, silver, iron, tungsten,
molybdenum, lead and zinc (Cui et al., 2014).

2.2 Data

Since Gaofen-5 satellite has not been launched yet, emissivity
image of GF-5’s TIR bands at the study area is simulated for our
research, and ASTER image was used as the simulation data
source. This ASTER data was acquired on September 27, 2004.

In addition, to analyze minerals’ spectral features indicated by
GF-5’s TIR data, carbonate, sulfate, and silicate mineral spectra
from ASU (Arizona State University) spectral library is used.
Specifically, 85 spectra of minerals from ASU emissivity spectral
library are selected, including 7 carbonate samples, 5 sulfate
samples, and 73 silicate samples (which contains 17 feldspars, 16

1157



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018
ISPRS TC IIl Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7-10 May, Beijing, China

amphiboles, 40 pyroxene). It is noted that carbonate, sulfate, and
silicate comprise 1.7%, 0.1% and over 90% of earth crust’s
quality separately.

Figure 2. The map of the study area (©2018 Bing Maps)
3. METHODOLOGY

The basic processing steps applied for mineral classification and
silica content estimation using GF-5 thermal infrared data are
given in Figure 3 and explained in the following subsections
briefly. First, band emissivities are calculated for these minerals
with spectral response functions of GF-5’s TIR bands. Then,
spectral features of these minerals are analyzed based on GF-5’s
TIR band emissivities; spectral indices and correlation model are
established for classification and silica content estimate,
respectively. Finally, these established methods are performed on
GF-5’s emissivity images.

Thermal infrared
response functions
1 ' TIR band
emissivities

GF-5 surface | Spectral feature
emissivity image analysis

Figure 3. Flow chart used in the study.

mineral spectra
from spectral
library

3.1 Spectral Indices

We compared these minerals’ TIR band emissivities, which are
shown in Figure 4. It can be observed that carbonate minerals
have a slightly higher emissivity in band TIR1 than in band TIR2,
whereas sulfate and silicate minerals show the opposite spectral
signature. Also, silicate and sulfate minerals have different
spectral features in band TIR2, TIR3 and TIR4. That is, sulfate
minerals have relatively higher emissivity in band TIR3 than in
band TIR2 and TIR4, while silicates generally show absorption
in TIR3 band emissivity. To quantitatively analyze these spectral
features for classification, two spectral indices are designed, and
they are defined as following:

R1 =£2/81 (1)

R2=(&; + &4)/ & (@)

where & = emissivity of ith TIR band
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Figure 4. GF-5’s TIR band emissivities of minerals in ASU
library.

R1 and R2 are calculated for 85 spectra mentioned above and
their range are listed in Table 1.

Mineral Type | RI1 range R2 range
carbonate 1.003 -1.015 | -

sulfate 0.620 — 0.946 | 0.799 — 0.893
silicate 0.865 —0.999 | 0.956 —1.208

Table 1.

Ranges of spectral indices from mineral in ASU library.
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From Table 1, we can see that R1 of carbonate minerals is greater
than 1, whereas sulfate and silicate minerals have an R1 of less
than 1. In addition, R2 of sulfate minerals ranges from 0.799 to
0.893, and silicate minerals have a R2 of 0.956 to 1.208.
Therefore, by setting threshold values of R1 and R2, carbonate,
sulfate, and silicate minerals can be classified based on Gaofen-
5’s four thermal infrared band information as following:

. Carbonate: R1>1

. Sulfate: R1<1 and R2<0.92

. Silicate: R1<1 and R2>0.92

3.2 Correlation Analysis

Each spectrum in ASU spectral library is accompanied by
physical and compositional information. Therefore, silicate
minerals’ spectra in ASU library and their corresponding silica
content can be used to build the content estimation model.
Specifically, correlation analysis is conducted between GF-5’s
thermal infrared band emissivity of silicate minerals or spectra
index calculated by these emissivities (i.e. &,/&,, €5/€3, €3/€4,
(&1 + &3)/2¢, and (&, + €4)/2¢€3), and the silica content; then
band emissivity or spectral index with the highest correlation is
selected. Finally, through regression analysis, the model with the
highest correlation coefficient (R?) will be finally chosen for
silica content inversion. Correlation models with relatively high
R? are displayed in Figure 5 and listed in Table 2.
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Figure 5 Correlation models established between GF-5’s TIR
band emissivity/spectral indices of silicate and silica content.

Emissivity/ Correlation model R2
Spectra index (x) (y denotes silica content)
& y=427x?>—-997x+ 623 | 0.466
€ y = —2.64x? + 3.62x — 0.53 | 0.592
€1/€; y =—492x2+ 11.62x — 6.24 | 0.318
€5/83 y =2.58x2—-591x+3.90 | 0.567

Table 2 Correlation model built for silica content estimate based
on GF-5’s TIR band emissivity/spectral index.

4. RESULTS

4.1 Emissivity Image Generation

The classification method is tested for our study area on GF-5’s
TIR simulated emissivity image, which is generated based on
spectral mixing of ASTER data. The simulation method is similar
to one that we’ve given in previous work (Liu et al., 2017). The
simulated image is displayed in Figure 6.
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Figure 6. False color composite of simulated GF-5s TIR band
emissivity image (R-TIR1, G-TIR2, B-TIR3).

4.2 Result Analysis

Mineral classification is conducted using thresholds of spectral
indices proposed in Section 3.1. According to our experimental
results, only carbonate and silicate minerals have been extracted;
no sulfate minerals identified in the study area. We have collected
47 samples (14 carbonate and 33 silicate samples) in Liuyuan,
and used these samples to validate the mapping results, which
turn out to be with 94% and 100% correct of recognizing
carbonate and silicate minerals, respectively. Moreover, through
ground survey with geological information analysis, sulfate
minerals do not exist in the study area.

According to the method proposed in Section 3.2, the correlation
between TIR2 emissivity and the silica content was found to be
the highest. The corresponding model is a quadratic polynomial
one that’s established based on TIR2 emissivity. However, the
model’s coefficient of determination (R?) is 0.592, which is not
very high. In contrast, silica content inversion model using
ASTER data is a linear model based on a spectral index (the ratio
of band 12 emissivity to that of band 13), with a R? of 0.78.
Concerning that linear model is more stable and with a higher R2
value, it can be inferred that GF-5’s thermal infrared data is not
as good as ASTER data for silica content inversion. Comparing
the spectral range of GF-5 and ASTER TIR bands in Figure 1,
we can see that ASTER’s band 12 and 13 are basically
overlapped by GF-5’s TIR2 band, which shows that GF-5’s band
settings cannot exhibit spectral features of silica contents as that
in ASTER data.

5. CONCLUSIONS

In this paper, the application of Gaofen-5’s thermal infrared data
is discussed for mineral information extraction, in terms of

mineral classification and silica content estimate for silicate rocks.

Based on mineral spectra from ASU spectral library, a
classification method is proposed for carbonate, silicate and
sulfate minerals, as well as the inversion model of silica content
tried on correlation for silicate minerals. Since actual Gaofen-5
data is unavailable, the classification has been tested on simulated
data, and accuracy analysis is conducted with ground data
collected in the field. According to experimental results, using
the method proposed in this paper, mineral classification can be
performed using Gaofen-5’s thermal infrared data. However, the
silica content inversion model is not as good as that based on
ASTER thermal data, showing that emissivity of GF-5’s thermal
infrared bands do not exhibit obvious spectral features associated
with silica content.
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Abstract—The mixed forest of larch (Xingan Larix gmelinii)
and white birch (Betula platyphylla) is the main forest type in
Northeastern China and plays a key role in regional ecological
environment. Remote sensing has become an important approach
to identify and classify vegetation types. By using hyperspectral
data, we could obtain more detailed vegetation information, such
as tree species. This study mainly focuses on the identification
algorithm of white birch based on hyperspectral remote sensing
data. The results show that the proposed method can effectively
detect the white birch with larch as the background vegetation.
Using this method, we can quickly realize the survey of tree
species in large area, which is of great significance for the study
of forest landscape ecology

Keywords—White birch, identification, hyperspectral, remote
sensing

I. INTRODUCTION

The mixed forest of larch (Xingan Larix gmelinii) and
white birch (Betula platyphylla) is the main forest type in
Northeastern China. It plays a key role in building green
ecological barrier and maintaining national ecological security
in the north area (Ercha et al., 2013). However, for a variety of
reasons, this kind of forest is also faced with several problems,
such as the tree species and stand structure are getting simple,
resulting in more forestry disasters (Li et al., 2012). Therefore,
there is an urgent need to develop an efficient identification
method focused on white birch.

Traditional methods of estimating the proportion of tree
species are mostly based on field investigation, which costs a
lot of manpower and material resources. By using remote
sensing data, the distribution of tree species in large area can be
obtained quickly and timely (Saatchi et al., 2008). Nevertheless,
the identification capability using traditional multi-spectral
remote sensing data has its limits in some area, where both the
target and the background are vegetation types. Fortunately,
hyperspectral remote sensing data have more abundant spectral
information with hundreds to thousands spectral bands. By
using hyperspectral data, we can identify more detailed
vegetation information (Buddenbaum et al., 2005; Clark et al.,
2005; Matsuki et al., 2017; Wietecha et al., 2017).

Therefore, this study mainly focuses on the identification
algorithm of white birch based on hyperspectral remote sensing
data.

978-1-5386-6642-5/18/$31.00 ©2018 IEEE
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II. DATA AND STUDY AREA

Genhe forest experimental area, located in Great Xingan
Mountains, is chosen as the study area (121.46° --121.54° E,
50.90° --50.95° N). Xingan larch (Xingan Larix gmelinii) and
white birch (Betula platyphylla) are the dominant vegetation
types in this region.

<

Fig. 1. The image used in our study (R: 488.43nm, G: 543.72nm, B:
694.91nm).
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The hyperspectral data used in this study was obtained by
AISA Eagle II hyperspectral scanner in August 28th, 2016. The
spatial resolution is Im and the spectral resolution is 3.3nm
with 64 spectral bands, covering a spectral range from 400nm
to 1000nm.

To remove the impacts of the atmosphere and topography
on the original data, radiation calibration, geometric correction
and atmospheric correction are performed. CALIGEOPRO
software is used for radiation calibration and geometric
correction, while ATCOR software is used for atmospheric
correction.

The processing of original aerial remote sensing image
could be time-consuming because hyperspectral images usually
contain a large amount of spectral data. So for improving the
calculation efficiency, we use a sub image of 500%*750 pixels as
our experimental data. Note that according to field
investigations, this sub image basically covers the main surface
types in the Genhe experimental area, including white birch,
Xingan larch, forest swamp, bare land and road.

I1I.

The white birch identification process mainly includes the
following steps. Firstly, considering that white birch is one of
the typical broad-leaved tree species, the biological parameters
in the canopy of white birch and larch has great difference. So
we choose 15 kinds of vegetation indices, which are sensitive
to the chlorophyll content, photochemical, structure insensitive
pigment, anthocyanin and water content to distinguish white
birch from Xingan larch. Then, according to the separability
between larch and white birch, feature selection of the original
spectrum and vegetation index is performed to reduce the data
dimension. Lastly, based on the selected feature bands, four
kinds of target identification algorithms are compared,
including Matched filtering (MF), Target-constrained
interference-minimized filter (TCIMF), Mixture tuned matched
filtering (MTMF), and Mixture tuned TCIMF (MTTCIMF).

METHODOLOGY

A. Feature selection

We employ the Jeffries-Matusita (J-M) Distance (Schmidt
and Skidmore, 2003) to describe the separability of samples
between white birch and the background types, in order to have
better assessments for the capabilities of identifying white
birch of different bands in the original image. J-M distance
distributes between 0 and 2, good separability between samples
can be expressed by a distance value larger than 1.9.

The formula of J-M distance is as follows:

M, ={L[\/p(x/VK) Iy | dx}2

where p(x/W1i) is conditional probability density, that is, the
probability of the i pixel belongs to the W; class.

The differences in spectra between white birch and other
background types are extracted when analyzing the spectral
features of white birch, and the separability between white
birch and other types in the original spectral space is computed.
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Meanwhile, we calculate several vegetation indices that are
sensitive to the contents of chlorophyll, photochemical,
structure insensitive pigment, anthocyanin and water in canopy,
as well as the separabilities in the feature space of the
individual vegetation indices.

TABLE L VEGETATION INDICES
NO. ABBR. FULL NAME
1 NDVI Normalized Difference Vegetation Index
2 SRI Simple Ratio Index
3 EVI Enhanced Vegetation Index
4 ARVI Atmospherically Resistant Vegetation Index
5 RENDVI Red Edge Normalized Difference Vegetation Index
6 MRESRI Modified Red Edge Simple Ratio Index
7 MRENDVI Modified Red Edge Normallzed Difference
Vegetation Index
8 SGI Sum Green Index
9 VREII Vogelmann Red Edge Index 1
10 PRI Photochemical Reflectance Index
11 SIPI Structure Insensitive Pigment Index
12 RGRI Red Green Ratio Index
13 ARII Anthocyanin Reflectance Index 1
14 ARI2 Anthocyanin Reflectance Index 2
15 WBI Water Band Index
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Fig. 2. Separability of samples between white birch and background types in
different original bands (J-M distance).

25

2.0

—o——t\—:

J-M distance

—a— Bareland
—e— Larch
—&— Road
—v— Swamp

0.5

2 3 45 6 7 8 9 10 11 12 13 14 15 16
Number of vegetation index

T
0 1

Fig. 3. Separability of samples between white birch and background types in
different vegetation indices (J-M distance).
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Fig. 4. Histograms of white birch (red)
different vegetation indices.

and Xingan larch (green) under

At last, the most useful spectral features that are sensitive to
white birch in the combining spectral space of both original
bands and proposed vegetation indices are selected, and the
feature spaces for identifying white birch are accordingly
established.

The finally used feature spaces contain: six original bands
within the spectral region of 443.1 to 497.58 nm, six original
bands within 647.19 to 685.34 nm, and some vegetation
indices including ARVI, SIPI, RGRI, ARIl, MRESRI and
MRENDVI.

Pre-processing of
hyperspectral data

Atmospheric
correction

MNF transformation Target spectrum

Model selection of

; Background spectrum
target detection & P

Results of target
detection

Fig. 5. Flow scheme for detection of white birch based on hyperspectral data.
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B. Target detection methodology

Figure 5 shows the processing flow for detecting white
birch using the selected features. During the process, four
widely used target detection methods are analyzed and
compared: Matched filtering (MF), Target-constrained
interference-minimized filter (TCIMF), Mixture tuned matched
filtering (MTMF), and Mixture tuned TCIMF (MTTCIMF).

We select 314 white birch samples through comprehensive
interpretation and filter survey verification, and use 100 of
them to be training samples, and the rest as test samples for
assessing the detection accuracies.

IV. RESULTS

The accuracies of difference identification methods are
listed in Table II. By comparing the detection results based on
the four methods between the original and feature bands, we
can see that dimensionality reduction for the original spectral
space not only increases the calculation efficiency but also
maintains high accuracies for all methods. In particular, the
accuracies for MTTCIMF and MTMF method are even much
higher when transferred to feature bands (i.e., increase by about
2.8%). And for feature bands, all methods can yield highly
accurate results (accuracies over 98%).

MF

MTTCIMF

MTMF

Fig. 6. Identification results of white birch using original spectral bands.
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MF

MTMF

MTTCIMF

Fig. 7. Identification results of white birch using selected feature bands.

TABLE II. IDENTIFICATION ACCURACY OF WHITE BIRCH
METHOD ORIGINAL BANDS FEATURE BANDS
MF 98.5981% 99.0654%
TCIMF 98.1308% 98.5981%
MTTCIMF 95.7944% 98.5981%
MTMF 96.2617% 99.0654%

In addition, it is worth noting that the MTTCIMF and
MTMF methods do not need adjusting parameters artificially,
so one important advantage for them is the detection results are
usually less disturbed by man-made operations.

V.CONCLUSIONS

This study proposes a white birch identification method
based on vegetation indices using hyperspectral remote sensing

978-1-5386-6642-5/18/$31.00 ©2018 IEEE

data, and takes Genhe forest experimental area as the study
area to perform the data experiment. The identification method
makes full use of the abundant spectral information of
hyperspectral data, and takes the biological parameters’
difference, such as chlorophyll content, photochemical and
anthocyanin, between the target and background vegetation
types into consideration. The results show that the proposed
method can effectively detect the white birch with larch as the
background vegetation. Using this method, we can quickly
realize the survey of tree species in large area, which is of great
significance for the study of forest landscape ecology.
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A Simple Shadow Area Processing Method

Haiging Wang
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Shadow iz an important factor that restticts remote sensing information extraction. How to 1me simple and

affective image processing method to display the remote sensing information of shadow area has been a
difficult problem in the field of remote sensing In thiz paper, 2 simple ratio analyziz method iz zpplied o
study the shadow ares remote sensing imape processing, which shows the remote senzing information
hidden in the shadow area better. The method lays 2 good foundation for forther remote sensing information
extraction. This method is simple and effective, not onky can sobve the problem, but also essy to operate

Eeaywards: Femote sensing, shadow area, ratio anzlysis, image processing
Ahbstract:

even thenon-remote sensing image processing professionals can slso be used flexdbly .
1 INTRODUCTION regional

Zhadow = an mmportant factor that restrictz remots
sen=mg miormation extraction. How to uze simple
and effective image processmg method te dsplay
the remote zansmz miormmtion of shadow area haz
been a difficult problem m the fizeld of remote
sensmg. Thers are nany research findmgs zbout
shadow proceszmp, m racemt vearz. A shadow
processmg method bazed on nommlized EGE colour
modal was proposed by Yang and Zhao {Yang and
Zhao, 2007y A shadow compenzation method bazed
on lmear stretchng, smoothng and prmepal
component was proposed by Wang and Wang
(Wang and Wang, 2010). By improving the Walle
fikermz shadow compensation strategy, the ground
mformation m the zshadow area was highlighted by
Gao et al {Gao etal, 2012). The shadow vegetation
mdex 2VI was constructed to discuss the problem of
imzze shadow removal bv Xu et al (o et al,
2013 Combmmp the wave band regreszion model
and zhadow vegetation mdex SVI can be effective,
according to Lm et al (Lna et 2L, 2013). Gao ot al
(Gao et al, 2014} believe that m order to
compensate the modal as the foundation, through the
mean brightness shadow and nom-shadow region
statetics and vamance, i = possible to uze the
method of feature emtraction and matchmg of
automatie  aequisition of model parameters,
automatic coppensation and shadow conprahenzrre

Wiang. H
A Bk Ehiahew A Peoising Meldd.

overzll lavel of compensation and
compensation for the two level local wmdow. Deng
et al. (Deng ot al, 2015} explored the use of blue
Lzght suppressiom algomthm and  statistical
mformation of shadow homogenety to compensate
for H, I and % conpeonents, respectively and
comverted the resultz to EGE colour space to
achieve shadow compenzation. Bazed on ArcGIS
Engma platform, Matlab and GDAL development
tools, Yanz et al. (Yang et al, 2013 mtegrated
shadow detecton and compensaion sveiens
dezigned accordmg to the shadow detection and
compensation zlponthm of high resclution ramots
semsmg immages. shadow removal of remote sensme
images based on mhomogensous regulanzed
textura-prezervimg was propozed by Fang at al
(Fang et al, 2013). The shadow removal model of
tradrional HEV space b mtegratmg one stap
mformation, bazed omn &, 2 shadow removal
algorthm of moving objects based on reflectance
ratio mvariants, was proposed by Zhang and Yang
(Zhang and Yang, 2016). Improvement of image
shadow tracking and elimmation algorthmbased on
texture lozs least constramt was proposed by Yan et
al (Yan st al, 2016). hMethods of pattern recognition
and imzge enhancement are used to dicuss the
problem of shadow removal by Zhao et al. (Zhao =t
al, 2016). DMethods wused zhadow exraction,
envelope removal similar pizl search and shadow
brghtnaszs reconstmuction to explore the shadow
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mformation reconstruction experiment of Landzat &
OLI mmage m hally area of southwest Chma ware
propozed by Fhang o a2l (Zhang ot al, 2017
Shadow removal algorthm based on mproved
Gaussmn mixture model and texure was proposzad
bv Wang and Zhang (Wang and Zhang., 2017). &
methed of target detection and zhadow remwoval
based on the combmation of mproved adaptive
hvbnd Gaussian model and colour space was
propozed by Wang and Tong (Wang and Teng,
2013). These shadow remwowval methods are more
suttable for remote sensmgz rezearcherz, and mmster
softoare professionals, however for ramote sensmg
mterpratztion  and mformefion  extractiom  of
perzonnzl engaged m the application of remwots
sensing, thesa software are often not good, and need
a lot of energy to camyv on the szoftwars
programummng, I =2 ale dificult to exract remote
sen=mg miormation of a shadow area. If 3 simpla,
effective, sasy to understand and eazy to operate
shadow arsa processmg method could be found; it
will zolve the problam of ramots senzmg shadow for
mterpreters and mformation exraction personnel

2 AN OVERVIEW OF THE

STUDY AREA

The study area & located m the maddle of Qmnghai
Provmee, m the southeasstern side of the (aidam

Bazm. It = a part of Eunlun mountam, Burhan
Bodar Mountam: m Chma, the highest peak of
which iz 3000 meters above sea level The study
area is located at an elevation of 4000 meters. Under
the action of plate movement, the ground surfacas
confinues to uplft, the arosion iz sharp and the
terrain is rugged where it 1= located at the southem
margm bamier of the Qaidam Basm. The ramota
zememyg Image of the mountam zlope offten has
shadow, causmg a lot of trouble to the remwots
zomzmy mfommmtion exraction and mterpratation
work, need a simple and affactrve treatment method
of shadow zone.

3 REMOTE SENSING DATA AND
PRE-PROCESSING

In order to improve ramote sensmg image of shadow
area, the GeoBve-1 and Worldview-2 remote
zensmg data of the study area were obtamed (Table
1)

In order to ensura that the rezearch work will be
camad out smoothly, first of all remote sensmg data
guality was checked for the vegstation cover, tha
amount of snow and ice, clovd cover, distorton, and
noise. nspaction shows that the remote senzmg data
15 charactenzed by mre cloud and smow, low
vegetation cover, no distortton, nonoke (Tabla 2).

Table 1: List of remote sensing data and their characteristics.

Mumber | Data Type Band MName Band Number | Fesolotion{m) | Spectrzl Bange{nm)
Pan Pan 0.5 450-B00
Elue 1 2 430-310
1 GeaEve-1 Grean 1 F] 310-380
Fed 3 2 G35-800
Idear Infrared 4 F] TEO-520
Pan Pan 0.5 430-800
Coastal 1 2 400-450
Elas 2 2 450-510
Grasn 3 2 510-380
1 Worldvisw-2 Yallowr 4 F] 385-625
Fed 5 2 630-850
Fed Edze [ ] TO53-T45
Near Infrared 1 7 2 TT0-BR3
Iear Infrared 2 [ F] Ba0-1040
Table I- Lizt of remote ssnsing data mepection
Number | Data Type Vegetation | Smow and Ice | Cloud | Distortion | Moke | Strip
1 GeaEye-1 Very Sparze Mo <5% | Mot Obvious | Mo No
2 Worldview-1 | Very Sparse <5%% <3% | MotObvious | Mo Mo
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Figure 2: Image contrast of Worldview-2 before and after data ratio operation (Left: B3; Middle: BS; Right:

B3/BS).

Remote sensing data pre-treatment meludes raw
data nommalization, 1image rectification; band
registration, image mosaie, data fusion, removal of
mterference and tadormg of black edgez. The
processed remots sensmg data are more suitable for
subsequentresearch.

4 IMAGE PROCESSING IN
SHADOW AREA

In order to display remots zensing mformation
hidden m the shadow area, a variety of remote
sensing mage processmg methods had been tned,
and it was found that the method of using band ratio
operation 1= smple and effective.

Usmgz GeoEye-1 ramote senzmg data to conduct
shadow area remote zensmg Image processmg
method, it was found that after executmg BL/B3
band ratio operation, the hidden mformation m the
shadow area can be dizplayed, which iz convenient
for remote sensimg mterpretation (Figure 1).

Usmg Worldview-2 remote senzing data to
conduct shadow area remots szensmz image
processmg method, 1t is found that after B3/B8 band
ratio operation, the hidden mformation m the
shadow area can be dizplayed, which 15 convenient
for remote zensing mterpratation (Figure 2).

5 CONCLUSIONS

It 15 concluded that by usmg GeoEye-l1 and
Worldviaw-2 remote sensimg data, Bl to B3 and B3
to BE band ratioz respectively can make the hidden
mformation in the shadow area appear, which makes
the mterpretation of the remote sensmg images
easier.

Thiz method is simple and effective, not only to
solve the shadow problem. but also 2asy to operate,
even for the non-remote zenzing image processmg
profeszionals.
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ABSTRACT:

The technology of airborne light detection and ranging (LiDAR), also referred to as Airborne Laser Scanning, is widely used for
high-resolution topographic data acquisition (even under forest cover) with sub-meter planimetric and vertical accuracy. This
contribution constructs the real digital terrain model to provide the direct observation data for the landscape analysis in geological
domains. Based on the advantage of LiDAR, the authors mainly deal with the applications of LiDAR data to such fields as surface
land collapse, landslide and fault structure extraction. The review conclusion shows that airborne LiDAR technology is becoming an
indispensable tool for above mentioned issues, especially in the local and large scale investigations of micro-topography. The
technology not only can identify the surface collapse, landslide boundary and subtle faulted landform, but also be able to extract
the filling parameters of collapsed surface, the geomorphic parameters of landslide stability evaluation and cracks. This technology

has extensive prospect of applications in geological investigation.

1. INTRODUCTION

Airborne light detection and ranging (LiDAR) system is a
multi-sensor system comprising three major time-synchronized
components: a laser scanner unit, a Global Navigation Satellite
System (GNSS) and Inertial Measurement Unit (IMU). Based
on the laser pulse time-of-flight distance measurement, all three
components together enable the direct derivation of the absolute
position (X, Y, Z) of each record reflection on the earth.
Therefore, the system is widely used for high-resolution
topographic data acquisition.

The technology of LiDAR with its direct determination of
elevation is capable to retrieve terrain (i.e. Bare Earth) point
measurements even under forest cover, allowing the generation
of Digital Terrain Models (DTMs) with a high degree of
automation, which has revolutionized the acquisition of
elevation data by providing a tool for rapid, highly accurate and
cost-effective data acquisition, relevant for regional and local
geological applications: Features such as tectonic structures
even if covered by vegetation could be evident by small local
elevation changes in the range of decimeters (Cunningham,
2006; Arrow Smith, 2009), these minor changes in elevation
can still be observed as the high vertical accuracy of LiDAR is
not lost by rasterization; Several studies use LIDAR DTM to
derive topographic signatures for characterizing land-slides (Mc
Kean, J., 2004; Glenn, N. F., 2006) or automated mapping of
landslides (Booth, A. M., 2009) even in forested areas (Van Den
Eeckhaut, 2012) in order to create or update inventories; Similar
studies have continued to improve the state-of-the-art in
automated mapping of landslides (Tarolli, 2012; Berti, 2013),
extraction of channel networks, identification of biotic
signatures in landscape morphology (Roering et al., 2010),
classification of marine terraces (Bowles and Cowgill, 2012),
and characterization of alluvial fan surfaces (Staley, 2006;
Volker, 2007); Besides object detection and mapping airborne
LiDAR data are an essential input in various process simulation
models in order to be able to predict or simulate scenarios of
future events and risk estimation of hazards such as floods

modeling processes (Cobby, 2003; Rufin Soler, 2008), debris
flows (Wichmann, V., 2008; Conway, 2010), rockfall (Deparis ,
J., 2008; Lan, H. X., 2010) and avalanches (Schmidt , 2005;
McColliste, 2009).

This paper presents studies in the geological investigation fields
such as surface land collapse, landslide and fault structure
extraction, using LiDAR data acquired by Leica ALS50-II
airborne laser system and its standard products -DEM, to assess
the ability of LIDAR technology on geological objects detection
and interpretation.

2. LIDAR DATA ANALYSIS

Airborne LiDAR system sends out laser pulses that get back-
scattered by various objects (ground surface, vegetation,
constructions etc.) and record the feedback signal. Objects in
different elevations may be illuminated by the cone of light
causing more than one echo that can be recorded by the sensor's
receiver, usually displayed in the form of discrete point cloud.

The analysis of LiDAR data products starting with the 3D point
cloud, possibly with full-wave-form attributes, can be grouped
into (i) a direct use of data and information derived from
LiDAR such as digital elevation model (DEM) and (ii) an
indirect application of further refined data such as roughness
parameters of land cover maps and hillshade maps etc. Basically,
the direct input extracts information from the LiDAR
observation (i.e. elevation and radiometric data), whereas the
indirect integration is based on a prior abstraction and
processing (e.g. classification and object detection).

A first step in Geological landform interpretation is the LIDAR
data visualization. For example, 3D perspective views or DEM
color-coded by height. Slicing or drawing profiles of the data
helps to get a better impression of the surface such as in
complex situations with mixed surface and object types. Deeper
understanding is gained by visualizing derivatives such as slope,
aspect and surface curvature or to colored drape information

This contribution has been peer-reviewed.
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from optical sensors over the elevation data. Care has to be
taken when adding ancillary data not acquired simultaneously in
order to avoid misinterpretation caused by temporal differences
in both datasets. Also differences in registration, accuracy, and
resolution have to be taken into account if combining different
data sets.

For applications in Geological landform analysis the separation
of terrain echoes (i.e. bare Earth) and echoes on objects such as
buildings and vegetation - called filtering - is of major
importance. Various methods and approaches are published
either working directly on the point cloud or on rasterized
Digital Surface Model (DSM). An introduction to filtering and
an overview of the most prominent approaches can be found in
Pfeifer (Pfeifer, 2008). An overview of processing methods,
analysis, and comparison of widely distributed software
products and applications of digital elevation models is given by
Hengl (Heng, 2009). Elevation model representing the
geomorphological relevant surface can be characterized by
landform classification providing input for applications in
geological investigation. DTM is the basis for landform
characterization and delineation. Landforms vary in their
appearance which depends on the representation scale, makes
the boundary definitions of regions vague and difficult to
delineate. This turns landform classification into an ambiguous
multi-resolution problem. In order to reach high automation for
classification, object-based approaches are used frequently.
They either work directly in the point cloud (object-based point
cloud analysis - OBPA, Rut zinger, 2008) or in the derived
rasterized models and images (object-based image analysis -
OBIA, Blaschke, 2010). These approaches can be combined or
iteratively applied where first the input data is segmented into
homogeneous areas to define patches of points or pixels, which
represent a part of an object. Features describing segments can
be either related to the statistical distribution of the point or
pixel values and their geometrical and topological
characteristics such as segment shape, size, and neighborhood
relations. Originally coming from the field of land cover
classification OBIA is also used for DTM extraction and
geomorphological object classification.

3. APPLICATIONS
3.1 Surface Land Collapse Survey

The subsidence is one form of coal mine secondary geological
calamity, it will make the environment worsening and endanger
people's life and safety. Therefore, recognizing the actual range
of surface subsidence includes important research and practical
significance. The precise measurement of the collapse, fill
volume, area and other data for the mine geological
environment problems provide decision-making basis for
engineering renovation. In this paper, coal dam region in Hunan
province was taken as an example to ground collapse analysis
using airborne LiDAR, in order to study the surface
subsidence( under vegetation cover)information recognition and
extraction.

In the study area, there are complex geological environment in
mines, dense vegetation, scarp, housing and other complex
features. What’s more, as a result of hydrothermal condition is
enough, and less human disturbance after the collapse, in the
region, surface subsidence covered by dense vegetation. Shown
in figure 1 (a) for optical image of the mining subsidence area
(red of the location of the elliptical instructions to collapse).
The figure shows that, due to the optical sensors can't penetrate
the vegetation, hence collapse information can't be accessed

from the optical remote sensing image. After field investigation,
it can found that the fieldwork method is difficult to carry out in
test zone, due to steep terrain and dense vegetation cover
(shown in figure 1 (a)). A prominent advantage of airborne
LiDAR compared to photogrammetry is the ability to derive to
penetrate vegetation by "seeing" through small gaps in the
canopy, make it possible to derive accurate DTM even in
densely forested areas, providing a very detailed terrain
description. Therefore, based on the DEM constructed by
discrete ground point from LiDAR, the boundaries of the earth's
surface subsidence area and not collapse can be interpreted
clearly (as shown in figure 1 (b) of the red line), so as to
identify the collapse range effectively, and through further GIS
spatial analysis to obtain the parameters such as geometric
center of the surface subsidence pit coordinates (projected
coordinate system), area and perimeter (table 1).

(a) image

(b) DEM obtained by airborne LiDAR (the red line for the
surface subsidence area and not collapse)

Figure 1.Subsidence area of coal dam covered with dense

vegetation

collapse pit
attribute name attribute value
perimeter / km 1.345
area / km? 0.007 55
center _X/ m 638 082.990
center _Y/m 318 848.871
center Z/m 44.15

Table 1. Geometry information of subsidence pits

The advantage of surface subsidence investigation using
airborne laser scanning system is that the obtained high-
precision DEM , which is quicker and more accurate calculation
sinkhole fill area and volume, provide important parameters for

This contribution has been peer-reviewed.
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surface subsidence to implement project management. However,
field geological investigation and measurement, are regularly
difficult to accurate measure the subsidence pits fill area and
volume parameters. In this paper, Triangular prism method is
carried out to calculate the fill volume of surface subsidence,
the basic principle is: (@ laser discrete point cloud on the
ground constructed the irregular triangle net (TIN, figure 2
(left)), forming the three prism set about the calculation of
earthwork terrain; @ filtering out surface subsidence (pit)
ground point, and then, using reserving ground points
determined a zero plane (right) (figure 2)by surface fitting. 3
Finally, the superposition of two TIN structure obtained by the
2 on the surface of the corresponding volume of the irregular
triangular structural unit clamp is the result of fill volume (table
2).

Fig.2 TIN constructed by ground data (left) and surface
fitting(right)

3.2 Landslides Detection And Characterization

Airborne LiDAR permits an improvement in the landslides
detection and characterization by creating accurate and precise
high-resolution digital elevation model(HRDEM) in raster grids
or TIN, which are 2.5D representations of the topography, or in
true 3D point cloud with a high density. Taking Zhangjiawan
landslides in three gorges region of China as an example, the
method of landslide identification bases on HRDEM from
LiDAR system is analyzed in this article.

The primary technique has been widely applied to detect and
map landslides by optical remote sensing, makes use of image
color difference or light shadow to identify terrain elevation
mutations (such as slope sag, scratches, etc.). Although the
resolution of image (figure 3) can achieve sub meter level,
limited to a single light direction, it is difficult to identify the
geomorphic features of landslide such as gully and boundary etc.
in detail. For airborne LiDAR technology, the obtained bare
earth point cloud data has the advantage to construct digital
elevation model, which could depict the real topography,
concluded micro morphological characteristics. And then, the
hillshade can be derived through different azimuth settings
based on DEM, with different illumination angle oblique hill
shading set up by different azimuth to strengthen the micro
morphological characteristics and terrain landform features,
which facilitate to identify the boundary of landslide group.

Figure 4 shows that simulating different azimuth (90°, 135° and
180°), a series of hillshade images about Zhangjiawan
landslides derived from DEM. Obviously, compared with
optical image, hillshade maps based on LiDAR data can more
clearly reflect the stereo configuration of landslides topography.
Moreover, there are obvious differences in landslides local
features expressed by shade relief images from different
azimuth: Compared with the shade relief image under the
illumination Angle 135°, these illumination Angle is 90° and
180° hillshade maps can more clearly reflect the linear features
such as gully; The hillshade maps under azimuth angle 90° and
180°, reflected different focus of the morphological

characteristics, are able to complement each other. According to
geomorphic features expressed by the hillshade maps under
different azimuth angle, the boundary of Zhangjiawan
landslides were delineated as shown in figure 5 (the red lines
marking out the border of the landslide group), the landslide is
composed of six secondary landslide.

o

(c) Azimuth a
180°

> S ) X A
(a) Azimuth angle  (b) Azimuth angle
90° 135°

3

ﬁgle

Fig.4 Hillshade maps of Zhangjiawan landslide

W N
' .-
E; o; ;andslides

Fig.5 Boundary and back scarp of Zhangjiawan
landslides(Azimuth angle 180° )

Boundary of landslides Backwa

3.3 Fault detection

ALS - derived DEM gives an accurate topography and permits
to identify morphologies have significations in order to
characterize the past fault activity. Study area located in Beiya
mine lot in Yunnan province of China was selected to carry out
the test on fault detection using LiDAR data. These data are
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very reliable with respect to height accuracy (root mean square
error: 0.2 m) and spot density (average density of laser spot: 2
pts/m?).

i .I.-

(b) Display by optical image
Fig.8 Display of micro-features of faults (Characteristic
between the red arrow is fault broken terrain)

(a) Hillshade

Elevation/m
2260.0 ~
2257.5 =
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(b) DEM cross-section drawn (c)Discrete points cross-section
drawn

Fig.9 Identification and micro-feature information of fissures

For early geomorphologists, field observations were central to
investigate the fault fracture and local surface active fault zones
in the scale of meters and centimeters, combined with surveying
difficulties (poor line of sight and limited GPS coverage).
LiDAR data can be depicted micro-topography meticulously,
the derived hillshade can identify the location of the crack
orientation towards nearly EW (AA) and NNW (BB) (figure 9

(a)). The LiDAR data is a form of discrete 3 d point clouds
(figure 9c), makes a different with optics image connected
relationship between pixels. Moreover, based on the LiDAR
data profile information (figure 9 (b), (c)), the surface cracks
information such as depth, length and geometric patterns can be
determined, to provide the foundational data for fault detection
quantitative analysis with different echoes.

Utilizing the filtering discrete ground points to constructed
DEM of truly landscape, which has the high spatial resolution
(0.5m). This resolution reaches the scale demand for broken
landscape identification. The shade relief derived from LiDAR
DEM can realize true three-dimensional expression of the
terrain bump tiny differences, succeeded to detect the surface
fissuring and the displacement of fault as Fig.8(a) shown.
However, compared with traditional optical remote sensing
means the study found that it is difficult to identify the subtle
fault broken terrain recognized from LiDAR data in optical
image (figure 8 b).

4. CONCLUSIONS

The airborne LiDAR (Light Detection and Ranging) technology
can directly measure the elevation of the bare ground surface,
construct Digital Elevation Model of true landscape, which
could provide the foundational data for geological
investigations. This paper demonstrates the applications in
geological investigation such as surface land collapse, landslide
and fault structure extraction for studying Earth surface
landforms and points out the large potential of applications
using LiDAR data for micro morphology of geological survey.
LiDAR datasets are used in different processing levels, ranging
from the original point clouds to the DEM, and also in different
depths of integration into applications, starting with LiDAR
derivatives (e.g. shaded relief map) assisting visual
interpretation: Airborne LiDAR technology see through the
vegetation on elevation to get the real 3D digital surface model
(DEM), which is a reliable observation data to reveal the
structure of the surface micro topography, which can recognize
the surface subsidence under vegetation cover effectively, and
extract quantitative elements such as filling area and volume of
the surface subsidence, these elements can provide scientific
basis for the comparative analysis about collapse development
and engineering renovation in the complex landform area; The
shaded relief map (hillshade) can simulate different illumination
angle highlighting and strengthening the micro morphological
characteristics to identify landslides effectively, that provides
the real terrain observation data for landslides emergency;
Compared with optical image, shaded relief map can reveal
subtle fault broken terrain, the structural characteristics of small
ups and downs, if do research in different echoes, the dynamic
changes of the landform features can be depicted to provide a
more effective technical methods for the high precision active
faults structure research.
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Abstract—At present, high spatial resolution remote sensing
images have been widely applied in the ground objects
classification. However, the information extraction of typical
opencast mining areas by using high spatial resolution remote
sensing images is less studied. The open-pit Nonoc nickel mine is
one of the largest laterites nickel ore in Philippines. In this paper,
based on the data resource of high spatial resolution remote
sensing images, we wused the method of object-oriented
classification with hierarchical multi-scale segmentation to
extract ground object information in the Nonoc nickel mining
areas. The qualitatively and quantitatively relative analysis
between single scale and hierarchical multi-scale identification
results shows that hierarchical multi-scale segmentation has
better effect and the highest precise, and the overall accuracy
and Kappa coefficient are 92.73% and 0.9024 respectively.
Consequently the hierarchical multi-scale segmentation method
is more suitable to be applied to the information extraction of
open-pit laterites nickel mining areas.

Keywords—hierarchical multi-scale
oriented classification; nickel mine;
WorldView-2

segmentation; object-
information extraction;

L

With rapid developments of remote sensing technology, the
high spatial resolution images, such as QuickBird, IKONOS,
WorldView and GaoFen (GF) data, are widely utilized for
classification, in particular the remote places and harsh
conditions. The classification results of high spatial resolution
images show higher and better precision in the land use/ cover
change, agricultural monitoring, road and building extraction
[1-4]. Recently, in order to avoid “salt and pepper” effect and
take full advantages of the shape and texture features of high
spatial resolution images to improve the classification accuracy,
object-oriented classification methods with multi-scale
segmentation have gradually become the research focus [5].
For the mining area, Zhang et al. (2016) detected the mill
tailings by GF-1 data and Yin et al. (2012) extracted the coal
mine area by IKONOS data by wusing object-oriented
classification method [6-7]. However, there are fewer
researches focused on extraction in the open-pit laterites nickel
mining areas by using high spatial resolution images. Due to
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complexity and inhomogeneity of mining areas, we aim to
investigate and exploit the potential of the object-oriented
classification on basis of hierarchical multi-scale segmentation
and to extract laterites nickel mining areas effectively and
automatically by WorldView-2 image.

II. STDUY AREA AND DATA

A. Study area

The Nonoc nickel deposit, one of the largest laterites nickel
ore in the Philippines, is located in Nonoc Island, northern
Surigao City [8]. It is estimated there are 112 million tons of
nickel ore which is mainly laterite oxide ore [9]. The laterite
regolith is thicker and the thickness is generally 3~10 m [10].
Owing to abundant resource, shallow depth, high
comprehensive utilization value and easy exploration and
exploitation, the Nonoc nickel deposit is well known in the
world and widely concerned by other countries. In this research,
the eastern region of Nonoc nickel deposit (1329 pixelsx1873
pixels) is chosen as the study area which is composed of six
types of ground object, including water, vegetation, road, soil,
pending mining area and mining area.

B. Data and Pre-Processing

The remote sensing data is acquired on March 2, 2012 by
WorldView-2 satellite launched on October 8, 2009 from
Vandenburg Air Force Base in California. WorldView-2
satellite operates at an altitude of 770 km and an inclination of
98°. The swath width of data is 16.4 km and revisit time is 1.1
day. WorldView-2 satellite sensor simultaneously -collect
panchromatic imagery of 0.46 m spatial resolution and
multispectral imagery with eight bands at 1.84 m spatial
resolution which includes four standard bands (red, green, blue
and near-infraredl) and four new bands (coastal, yellow, red
edge and near-infrared).

The Pre-processing required three steps by ENVI 5.3[11-
13]: (1) Radiometric Correction to eliminate the radiometric
distortion including radiometric calibration and atmospheric
correction; (2) Geometric Correction to acquire the accurate



geographical coordinates and (3) Clip to obtain the study area.
The WorldView-2 image of study area is shown in Fig.1.

Fig. . True color composite image of WorldView-2 and verification
samples in study area

I1I.

The extraction of mining areas carried out by object-
oriented classification methods on basis of hierarchical multi-
scale segmentation technique. First of all, the optimal
segmentation scale was analyzed in the study area, and three
scale levels were selected for segmentation. Secondly,
combined with the spectral features, texture features, shape
features and related characteristics of the objects, the
classification rules were established. Thus, classification results
were extracted by three single scales and hierarchical multi-
scale in the study area. At last, the extraction results were
evaluated by visual interpretation and confusion matrix with
verification sample data.

The method steps were as follows: (O Based on
eCognition9.0 software, four bands of Worldview-2 image,
which includes blue(B1), green(B2), red(B3) and NIR(B4),
were considered as the input data; @Using hierarchical multi-
scale segmentation technology, the scale parameter was 70,
shape weight was 0.3 and compactness weight was 0.5 as the
first segmentation scale; (3 Normalized difference water
index(NDWTI) was calculated by using B2 and B4. The objects
whose NDWI>0.1 were classified as the water; @Normalized
difference vegetation index (NDVI) was computed by using B3
and B4 in the non-water areas. When NDVI = 0.37 or
(0.25<NDVI<0.37 and Mean (B3) <210), the corresponding
objects were extracted as the vegetation; & The second
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segmentation scale was executed in the unclassified objects.
The scale parameter was 70, shape weight was 0.1 and
compactness weight was 0.5; © In non-vegetation areas,
objects were classified as the roads on the basis of density rule
(Density<<0.9); @DThe third segmentation scale was carried out
in the remaining unclassified objects. The scale parameter was
100, shape weight was 0.1 and compactness weight was 0.5;
The mining areas were extracted by gray-level co-occurrence
matrix mean variance (GLCM std) rule (GLCM std=32 and
B1>220 and B3>310) and @ The soil and pending mining
areas were distinguished by GLCM std and NDVI rules
(GLCM std >25 and NDVI<0.17) in the unclassified objects.
The flowchart of hierarchical multi-scale segmentation
processing is shown in Fig.2.

| WorldView-2 image |

ation scale

Fig. 2. Flowchart of object-oriented classification method based on
hierarchical multi-scale segmentation

IV. RESULTS AND ANALYSIS

The extraction results of the nickel mining areas are shown
in Fig.3 and the classification accuracy evaluation is shown in
Table 1. In Fig.3, the extractive results of the different
segmentation scales indicate that both the water body and
vegetation can be fully extracted by using NDWI and NDVI
rules. Some regions with higher brightness of mining areas are
easy to differentiate. However, owe to the color similarity of
lots of unexploited areas, the narrow non-cement roads, bare
soil and pending mining areas are difficult to distinguish.
Overall, the result of Hierarchical multi-scale shows preferable
visual effect. In order to further quantitatively analysis, the
extraction accuracy was evaluated by using confusion matrix
of 234 verification points (40539 pixels, show in Fig. 1) which
were randomly selected in the study area. Compared with three
single scales, the hierarchical multi-scale segmentation gave
the highest precise. Furthermore, the most raising of overall
accuracy and Kappa coefficient are 5.73% and 0.0782
respectively.
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Fig. 3. Extraction results by using object-oriented classification method with different segmentation scales

TABLE L. ACCURACY EVALUATION OF CLASSIFICATION RESULTS
Mining area TBM area
Overall
Scales Producer User Producer User accuracy/% Kappa

accuracy/% accuracy/% accuracy/% accuracy/%
First scale 99.58 93.86 71.74 65.01 90.65 0.8745
Second scale 99.05 95.78 78.68 65.24 89.25 0.8554
Third scale 96.92 95.50 81.05 59.87 87.00 0.8242
Hierarchical multi-scale 99.85 96.50 83.33 75.25 92.73 0.9024

V. CONCLUSION AND DISCUSSION [4] Mutanga O, Adam E, Cho M A, “High density biomass estimation for

Based on the data resource of WorldView-2, our analyzed
results show that the information of nickel mining areas is
extracted availably and efficiently by using the method of
object-oriented classification with hierarchical multi-scale
segmentation. The overall accuracy and Kappa coefficient are
92.73% and 0.9024 respectively, indicating that the effect of
extraction is better than any single scales. As can be seen from
the above analysis, the extracted results are effective and can
fully meet application requirements.

However, due to the color similarity, pending mining areas
are difficult to discriminate form the bare soil, the producer
accuracy and user accuracy are both low. Hence, the future
work could pay more attention to the further research of the
rules for bare soil and pending mining areas, improving the
extractive effects and accuracy. Furthermore, more verification
works are very necessary, such as increasing the number of
samples to verify the validity and objectivity of the accuracy
and applying in other study areas to analyze the robustness and
universality of the rules.
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Abstract

With the rapid development of multiparameter measuring for aeromagnetic and airborne
gravity survey, traditional data processing faces new challenges, and multiparameter joint
transformations have become a new topic. We propose a procedure framework for multiparameter
joint transformations of potential field data in the Fourier domain. The framework was obtained by
constructing observations with the potential and minimizing the sum of the data misfit. In the
application to gravity gradiometry, we discussed the gravity potential that calculated from the raw
tensor components, and proposed a generalized transformation, which contains different weighting
factors for different components. We also considered data processing for instrument which
acquires two curvature components of the gravity gradient tensor, and discussed the algorithms of
determining the potential from curvature components.

Keywords: Multiparameter measurement, transformations of potential field data, airborne gravity
gradient, Fourier domain.

Introduction

Nowadays, gravity and magnetic exploration are not satisfied with the traditional
measurement of a single field parameter, while simultaneously acquiring a number of field
parameters become more and more popular, especially for airborne gravity gradient (AGG) and
aeromagnetic survey. As a result of the development of highly sensitive magnetometers,
aeromagnetic gradiometry has become another routine choice for exploration, which can add a
new dimension to high resolution of shallow magnetic information. AGG survey is the main
direction of multiparameter measurement of airborne gravity. In recent years, airborne gravity
gradiometer provides very accurate measurements of the spatial variations of the gravity field and
its engineering applications or commercial surveys have become common . Multiparameter
measurements of potential field, such as AGG measurements, bring new challenges to data
processing. The routine transformations for potential field usually just transform one component
into another form, while multiparameter survey will acquire multiple parameters simultaneously,
hence, it is necessary to consider multiparameter data joint transformations of potential field. In
practice, joint transformation of multiparameter data is significant for airborne gravity gradient
data processing. Some commercial airborne gravity gradiometers, such as Falcon airborne gravity
gradiometer, only acquire GNE and GNU components, and we need multiparameter joint
transformations procedure for reconstructing the entire tensor from them.

In order to solve the problem of multiparameter joint transformations for potential field, we
first employ the Fourier transform matrix to express the potential field transformation in the
frequency domain as a matrix production form. Then we construct the multiparameter as a linear
form of the gravitational attraction or magnetic scalar potential. The final potential is obtained by
minimizing the data misfit between the multiparameter constructed and observations. The
gravitational attraction or magnetic scalar potential then can be used to convert to any parameters
of potential field. Since the transformations do not take into account the specific measurement
systems, it provides universal framework of multiparameter joint transformations of potential field
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data.

Matrix Product Form of Potential Field Transformations

The potential field transformations can be represented as filtering in the Fourier domain. Here
we define U, as the field to be converted, U, is the result of transformation, and A is the

filter of potential field transformation in the Fourier domain. [U;], [A] and [U,] are grid data
of N,xN, size. The relationship of potential field transformations in the Fourier domain can be
expressed as Hadamard product of matrices, i.e.

[Ur]=[Alo[Ud], (1
where [(7 o] and [(7 r] are the Fourier transform of matrices, respectively.

2D Fourier transform can be written in matrix form as (2, 3)

vee([Uo]) = [Fyy, vee([U, D), 2)
vee([U,]) = [Fy v, 1" vee([Uo]). 3)

Thus, the equation (1) can be expressed as (4)
vec([U,]) =[Fy ., 1" diag {vec([A])}[F, y, Vec([U, 1), 4)

where vec([x]) =[x(0,0),x(1,0),...,x(N, —1,0),x(0,1),...,x(N, =L, N, =1)]" , diag(vec([x])) will
return a square diagonal matrix with the elements of vector vec([x]) on the main,

WA?XO W]SXI . W]\?X(N_l)
1 W1,><0 1l Jy7 VD ' '
[Fyn, 1= 10T, L] TN " A N is the normalized
WA(/N—I)XO W[éN—l)x] WA(/N—I)X(N—I)

Fourier transform matrix, W, = exp(_ﬁ”j , W\If = exp(_i]iﬂ k) ,i*=—1, the Kronecker
product denoted by ®, and the superscript H denotes complex conjugate transposition.
Therefore, the potential field transformations can be expressed as matrix product of form, i.e.
d=Gm. 6)
For example, we set A = exp(—hm ), representing upward continuation matrix, where
h>0 , k_ and ky are the wave numbers in the x and y directions, thus
G =[Fy, " diag {vec([AD}[Fy 1. If m=vec([U,]) is the observed field, we can calculate the
upward continuation field d by using equation (5). If d =vec([U,]) is the observed field, we can
invert the downward continuation field m by solving equation (5).
Framework of Multiparameter Joint Transformation

For multiparameter survey, the measurement results can be expressed as a linear form of the
gravitational attraction or magnetic scalar potential in the Fourier domain [5]. We set the
observation of the multiparameter field is U, (j=1,2,3, ..., n), the transformation matrix is G,

i.e.
G, =[Fy, 1"diag{vec([A,D}[Fy .1 (6)
Thus
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vec([U,]) = G vec([V]), (7)

where V is the gravitational attraction or magnetic scalar potential.
In order to solve the potential in equation (7), we introduce a weighted objective function
with the form

g (8)

¢= Z z HWC([Uj D-G jvec([V])‘

where A, is the weighted factor. Solving partial derivative of equation (8) on vector V, we will

get
ovec(V]) 2; 4G; (vec([Uj]) ijec([V]))- 9)
Minimizing equation (8) with the partial derivative is zero, thus
vec([V]) = [an Q/G?G‘,J Zn:/le?vec([Uj]) , (10)
i.e.
N AN
vec([V]) = Z:[F},]N2 \diag {vec([————L—1)}[Fy ,, Wee([U ), (11)
" YA,

where superscript * indicates complex conjugate. Then equation (11) can be written as a simpler
form

oo AN,
V:z "./ j= , (12)

. .
! ZIAJ'A/'A]
=

where ¥V and U ; are the Fourier transform of ¥V and U,, and A, is the filter of potential
field transformation in the Fourier domain, i.e.
Uj=AV. (13)

Therefore, for multiparameter joint transformations, the gravitational attraction or magnetic
scalar potential can be calculated by using equation (12). It provides a universal framework of
extracting potential from multiparameter components.

Airborne Gravity Gradient Data Processing Application

Airborne gravity gradient data provide rate of change of a given component of the gravity
field in a given direction. Given the three components of the gravity field, there are nine different
gradients and they collectively form a tensor at each point in the 3D space. Here, adopting a
right-hand Cartesian coordinate system in which the x-axis points to geographic north, y-axis to the
east, and z-axis downward, the gravity gradient tensor is represented by

oty v oW |
ox>  0x0y OxOz

v ov o | | b T
= o ool | W L (14
y x y y Z TZX TZL TZZ

oV oV o
| 0z0x  Oz0y oz’ |
Since the gravitational attraction satisfies Laplace’s equation in source-free regions, the
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gradient tensor is symmetric and has zero trace, ie. T, +T, +T_ =0, and T, =T, , where

m,n = Xx, y,z . Consequently, there are only five independent components in the tensor.
The 2D Fourier transform of each gradient tensor component is related to that of the
gravitational potential by an algebraic expression
—k! —k.k, ikk.
o ~ o
T=DV, D=|-kk, -k, ikk. |, (15)
ikk, ikk, Ok

where T is the Fourier transformation of gradient tensor, k, and k, are the wave numbers in

the x and y directions, k. = Jk] +k, .

Evaluating potential for full gravity gradient tensor

At present, Gradiometers deployed in commercial systems have two types, partial tensor
system with 8 accelerometers and full tensor gradiometer (FTG) [1]. The FTG systems measure
five independent components, including T_, T, T_, T, and T_, but the partial tensor

xx Xy xz W yz?°
systems only measure two components. For FTG systems, given the 5 components of raw tensor
gradient data, it is logical to utilize them to carry out post-acquisition processing to further reject
noise. To get utilize tensor gradient, we substitute the linear transformation mapping gravitational
attraction to gradient into the framework of equation (12) for calculating the potential

Akl T = Ak k T —id_kk T =2 k’T, —id_k k. T

:_ xx v x Xy xTy Xz x'"z 'y , (16)
Akl + AT+ AKIKD + A k) + A kK
where A isthe weightof T .
If 4,=4,=4.=4,=4_,
~ —k'Tu—kk, Ty —ikk Te—k T, —ik kT,
y=— oy 7 T y 7 T T (17)

2k -k
It can be found that equation (16) is consistent with the Sanchez's method of extracting
potential from gradient components in the Fourier domain %7, Both equation (16) and equation
(17) can extract potential from gradient components, but the noise levels of components are
different, which are ignored in equation (17). In practice, we should consider the weight of the
gradient components observed. Consequently, equation (16) is a generalized method, which
considers the different quality of the components. Once the potential is found, the utility of gravity
gradient tensor components can then be calculated easily by using equation (15).

Transformation processing for partial tensor system

We also consider the problem of evaluating the gravity gradient tensor components form
airborne gravity gradiometers of partial tensor system. Typical partial tensor systems, such as
FALCON and HeliFALCON systems, only acquire two curvature components of the gravity
gradient tensor namely GNE ( Ty;; ) and GUV (T, )

T =T,, (18)

X]

Txx_Tw
Ty == (19)

Since these curvature components cannot easily and intuitively be related to the causative
geology, they should be transformed into vertical gravity gradient data or gradient tensor data. To
evaluating tensor, we can use equation (12) to calculating the gravitational attraction. The potential
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can be transformed into GNE and GUYV, i.e.

Tne =~k &,V (20)
O S N
Tuv =¥V. 21

Thus, we can determine potential directly by equation (12), i.e.

~ Ak ke, Te —0.54,, (k2 —k2)Tuv

V= , (22)
I (ke ) +0.25 2, (k2 — k)
where A, and A, arethe weightsof T, and T, , respectively.
If A = Auy >
Ak, Txe —2(k —k2)Tuoy
[ r . (23)

k!
Equation (23) is completely consistent with the potential determined by least-squares
approach shown by Pilkington (based on Brewster J, personal communication, 2012) [71,
Pilkington also gave another form of formula for determining potential [7), i.e.
- 2<Tuv +iTex )
V=" (24)
(k, —ik,)
Pilkington may think that equation (23) and equation (24) are different methods [7]. In fact,
equation (23) is consistent with equation (24), because

- K-k .
ok, Toy ==——Twe. (25)

Equation (24) can be transformed into equation (23) according equation (25). Dransfield
gives another form of formula to determine vertical gravity gradient (based on Maurice Craig's
personal communication) ), i.e.

~ k —ik )/ ~ ~

T =-2) 2= |(Tw +iTuv ). (26)
k, —ik,

In fact, according to equation (26), equation (24) and equation (23) are the same. To the best

of our knowledge, the methods given in the current literatures have no difference from equation

(22), but equation (22) takes into account the different precision of components, and therefore, it is

a more general method of evaluating the potential from GNE and GUV.

Processing example of airborne gravity gradiometer

To illustrate the application of multiparameter joint transformations of potential field, we
show a real example of airborne gravity gradient data processing. The airborne gravity gradient
data collected from a high-resolution airborne gravity gradient (AGG) survey flown over a portion
of Great Sand Dunes National Park and Preserve in the San Luis Valley of south-central
Colorado™. Fugro Airborne Surveys conducted a high-sensitivity HeliFALCONTM AGG survey
over survey areas under contract with United States Geological Survey (USGS). Figure 1 shows
the grid data of GNE and GUV. The system noises for this survey were 2.88 E and 3.04 E for NE
and UV respectively for figure 1. We use equation (22) to calculate the corresponding potential
and obtain the vertical gravity gradient grid for interpretation. Figure 2 shows the result of the
vertical gravity gradient grid, where the weight coefficients in the processing are 1/2.88 and 1/3.04,
respectively. We compared the Figure2 with the vertical gravity gradient grid published by the
USGS, and neither of them considered long wavelengths. The example verifies our algorithm.
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0 1000 2000 m

Figure 1. The measured airborne gravity gradients GNE (a) and GUV (b)

0 1000 2000 m

Figure 2. Result of the vertical gravity gradient

Conclusions

With the rapid development of multiparameter measuring for aerogeophysical survey, we
established a procedure framework for multiparameter joint transformations of potential field data.
The framework is obtained by constructing the transformation relations between the
multiparameter observations and the potential, and minimizing the sum of the data misfit. By using
the framework, we discussed the gravity potential calculated from the gradient tensor components,
and proposed a generalized transformation, which contains the different weighting factor of
different components. We also pointed out that there is essentially no difference between the
various methods of evaluating gravity gradient tensor components or gravity potential from the
curvature components in the Fourier domain.
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Abstract—To make better use of the advantages of radar and
promote the application of image fusion based on radar data, the
author uses different fusion methods based on GF-3 SAR and GF-
1 MSS, and evaluates the fusion results by analyzing mean,
variance, information entropy, average gradient, spectral
distortion and correlation coefficient. The results show that HSV
and GS transforms have the best performances in overall. PC is
recognized as the third, while it is still remarkable that it has the
best ability of spectral retention. And the specialty in NIR band
makes PC more conducive for extraction of vegetation. Brovey
and Multiplicative transforms are not effective in comparison.

Keywords—GF-3, multispectral image, SAR, fusion, remote
sensing

I. INTRODUCTION

With the increase in the quantity of remote sensing satellites,
the amount of multi-sensor and multi-resolution images has also
grown explosively [1]. The technology of image fusion solves
the problem that high spatial resolution and multi-spectral

properties cannot be provided by a single sensor at the same time.

However, previous research is more focused on optical images
rather than radar data. In recent years, North China has been
affected by heavy fog more frequently. Optical images are
subject to cloud and fog shielding so that they cannot provide
valuable fusion images. Radar can make all-weather and all-day
observation of the earth. To some extent, radar can break the
restriction of optical images which are vulnerable to cloud and
fog shielding. Although there are related studies about the fusion
using radar and optical images, research on image fusion using
GF-3 SAR data is few as GF-3 has just been in service less than
two years. For new ideas on utilizing radar and optical image,
the author attempts to explore different fusion methods based on
GF-3 SAR and GF-1 multispectral data, and evaluate the fusion
result by analyzing indexes including mean, variance,

Xu Han
China Aero Geophysical Survey
and Remote Sensing Center for
Land and Resources
Beijing, China
eqbeowulf@163.com

information entropy, average gradient, spectral distortion and
correlation coefficient [2].

II. DATA PREPROCESSING

The research is based on the east of Anyang City, Henan
Province. The experimental data include GF-3 radar data and
GF-1 multispectral data. The acquired date of GF-3 radar data is
31st January, 2017, with a spatial resolution of 3 meters. The
multispectral data include a four-band image with a spatial
resolution of 8 meters and its acquired date is 18th June, 2016.
Types of features on the ground in this study area include
buildings, roads, water, vegetation, etc.

The preprocessing of radar data include spatial filtering,
radiation calibration, multi-look, geocoding, terrain radiation
correction and reprojection. Side-view radar is commonly
suffered from speckle noise. The speckle noise is randomly
distributed in the image and mixed with the ground objects, with
a result of reducing the spatial resolution of the radar image.
Therefore, the suppression of speckle noise is particularly
important before the fusion of radar and multispectral data.
Because of its importance, filtering is widely used to reduce
image noise. Among the common filtering methods, Frost filter
is a minimum mean square error algorithm which adapts to the
local statistics of the image to preserve edges and small features.
It can smooth noise while maintaining the edge information and
the details of the image, without reducing the clarity of the radar
image. Compared with the median filter and the average filter,
the Frost filter is a better choice. A 33 filter window is selected
for noise reduction in this paper. It should be noted that the rise
and fall of the terrain has a certain influence on the geometric
and radiation of the radar. Although the study area is in the plain,
the terrain radiation correction of radar should be applied DEM
to weaken the geometric deformation caused by the terrain, for
a better registration between radar and multispectral image. The

This work was jointly supported by “National Key R&D Program of China” (No.2017YFB0503803), and
“Geological and mineral evaluation project of the China Geological Survey” (No.DD20160077).

978-1-5386-6642-5/18/$31.00 ©2018 IEEE
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preprocessing of GF-1 multispectral data includes atmospheric
correction and geometric correction before fusion.
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Fig. 1. Data Processing and research methods

III. RESEARCH METHODS

The research methods include image fusion and the
procedure.

evaluation on fusion quality. Fig.1 shows the research
Sutag ) . » ;

Fig. 2.

3) PC transform: PC is the abbreviation of principal
component analysis. It is a multi-band orthogonal linear
transformation based on statistics [5]. After transformation, the
first component has the most information, while other
components would lost information [6].

4) GS transform: GS is the abbreviation of Gram-Schmidt.
Like the principle of PC, the Gram-Schmidt transform replaces

Grm-Schmidt
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A. Image fusion methods

The purpose of image fusion is to get an accurate and stable
interpretation result on the premise of improving the clarity of
the image while not changing spectral characteristics [3]. The
methods of fusion are diversified for different application
purpose. Fusion methods such as HSV, Brovey, PC, GS and
Multiplicative are adopted in this paper because of the
characteristic of the ground objects. Because only three bands
can be participated in the operation in HSV transform, all the
fusion methods in this experiment use band 4(NIR), 3(Red), and
2(Green) to calculate and display for a more intuitive visual
effect, which is standard false color synthesis.

1) HSV transform: H, S, V represent hue, sateration and
value respectively. The three components are independent
010each other and can be separately controlled, so that the color
features can be quantitatively described by them. And the RGB
color space can be quickly converted into HSV space to
complete the fusion of images with different resolution.

2) Brovey transform: Also called ratio conversion. It
decomposes the image space of multispectral images into color
and brightness and calculates them. The algorithm is simple and
easy to implement, and can effectively reduce the coefficients
in the conversion process [4].

Multiplicative

Fusion results of different methods

the first component with the high-resolution radar image, and
transforms the multispectral data into orthogonal space, and
then makes fusion. It can eliminate redundant information. This
method can better maintain the spectral information of the
original multispectral data, and solve the problem that the first
component information is too concentrated [7].



5) Multiplicative transform: Using the multiplicative
algorithm to merge two images with different spatial resolution.

B. Methods of evaluation on Fusion Quality
Quality evaluation of image fusion can generally be divided

into qualitative analysis dominated by subjective perceptions,
and quantitative analysis measured by objective indicators.

1) Qualitative analysis based on visual observation: Color,
brightness, characteristics of the texture, and the shape of the
edge can be used to evaluate the effect of fusion by visual
observation [8].

2) Quantitative analysis: Some indexes demonstrate more
objective evaluation on fusion quality, effectively avoid being
too subjective.

a) Mean: Mean is the average of image gray value, which
reflects the brightness of the image from the visual side.

b) Variance: It reflects the dispersion of the image gray
level. The greater the variance, the more distinct the gray levels.
And the contrast will be more obvious, which means more
information contained in the image.

¢) Information Entropy: It is an important indicator
reflecting the richness of information in images.

H(x) = =YX 51 P,log,P; )

d) Average Gradient: The gradient represents the
changing rate of the image gray value and reflects the clarity of
the fusion image. Commonly, the decrease of average gradient
means the image becomes blurred after fusion.

- 1 M| OF (e yNY | (OF (v
C=m—Dw -1 XZM Z,-Zl j(( %, ) +( v ) )2 @
e) Spectral distortion: Spectral distortion describes the

distortion of the spectrum. Higher spectral distortion means
more severe distortion the fusion image.

1 M N
b= Nzi=12j=1| FGp=F@NI 3)

f) Correlation coefficient: ~ Correlation coefficient
describes the retention of spectral characteristics before and
after fusion.
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IV. QUALITY EVALUATION OF IMAGE FUSION

As shown in Fig.2, visual observation and contrast should be
carried out after clipping the fusion images with a fixed size
window and same location. In ArcGIS, it can be found that the
multispectral image is more blurred than the fusion result while
zooming to raster resolution, which shows that the fusion images
have significantly improved in spatial resolution.

TABLE L. THE EVALUATION INDEXES OF IMAGES AND BANDS
D e Ve Ve pmelor s Sned Coion
GF-3 2.70 10.71 2.74 1.54

Green 57.97 523.23 6.46 9.68 0.00 1.00
GF1-MSS Red 72.51 862.25 6.83 12.27 0.00 1.00
NIR 103.19 892.24 6.73 9.72 0.00 1.00
Green 64.50 2477.65 6.84 32.76 28.59 0.39
HSV Red 81.63 4000.46 6.49 41.12 35.83 0.43
NIR 112.76 4581.89 4.28 55.83 44.67 0.25
Green 2.35 9.90 2.50 1.30 55.90 0.20
BROVEY Red 2.26 8.60 2.45 1.23 70.55 0.23
NIR 2.39 6.01 2.58 1.29 101.12 0.23
Green 40.40 54.62 4.75 1.87 19.95 0.60
PC Red 39.33 95.62 5.23 2.28 33.60 0.82
NIR 83.10 292.53 6.06 2.98 24.41 0.79
Green 49.78 1168.14 6.66 20.61 22.00 0.38
GS Red 60.84 1930.38 7.02 28.30 30.42 0.34
NIR 92.83 2371.82 7.45 28.65 30.15 0.53
Green 4.71 3.11 1.64 0.67 53.28 0.34
MULTIPLICATIVE Red 6.17 4.96 2.06 0.88 66.34 0.36
NIR 7.08 7.03 2.62 1.33 96.12 0.22
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A. Qualitative evaluation

The HSV transform well preserves the color and brightness.
The edge and shape of lakes and roads are relatively clear and
artificially developed areas such as buildings exhibit brightly in
the image, which make it to be easily identified. However, some
of the texture features are also lost.

The image after Brovey transform looks dark and gray,
different features are mixed together. The shape and outline of
the ground objects are too blurred to be identified visually.

Although the color distortion of building area is serious in
PC, vegetation and lakes are easy to identified since being
enhanced, and the texture is clearer than other methods

The effect of GS transform is good. The brightness is
moderate while details of the building area are well preserved.
The color is relatively close to the original multispectral image.

Both the shape and the edge information in the image are
partially lost after Multiplicative transform. The fusion image
looks dark and gray which make it difficult to identify the
features on the ground.

Green Green
120.00 5000.00
4000.00
3000.00

2000.00,

B. Quantitative evaluation

To analyze the fusion results more objectively, the mean,
variance, information entropy, average gradient, spectral
distortion, and correlation coefficient of each image were
calculated to make quantitatively analysis. The results are shown
in TABLE L

As shown in Fig.3(a), compared with GF-1 MSS, only HSV
transformation among the five fusion results has an increased
mean value. Among other transforms, Brovey and
Multiplicative have the most mean-attenuation which are less
than 1/10 of GF-1 MSS in each band with a serious loss of
brightness information. The results are consistent with the visual
observation.

As shown in Fig.3(b), the variance is significantly increased
after HSV and GS transform, especially in the Red and NIR
bands, which indicates the wealth of gray information of those
two bands. On the contrary, the variance after PC, Brovey, and
Multiplicative transforms have reduced. The variance after
Brovey and Multiplicative are reduced by more than a hundred
times, which directly reflected the visual results of gray and dark.

Green
8.00

NIR Red NIR Red Red
Mean Variance
(a) (b)
Green Green
60.00 150.00
40.00 100.00
20.00 50.00
0 OA
NIR Red  NIR Red  NIR
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Spectral Distortion
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®
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Fig. 3. Radar chart of different indexes and bands

The information entropy is shown in Fig.3(c). The
information entropy after GS transform exceeds the original
multispectral in three bands, indicating that the information
volume is improved. The information entropy of HSV and PC is
relatively close to GF-1 MSS. However, the information entropy
of HSV reduce more in the NIR band than the other two bands.
The information entropy has a big loss after Brovey and
Multiplicative transform.

As shown in Fig.3(d), HSV has the largest average gradient,
especially in NIR band, which is followed by GS transform. And
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they are both higher than GF-1 MSS. The edge information of
the ground objects has significantly enhanced, and the clarity of
fusion images after HSV and GS are increased. Although
Brovey and PC transforms maintain the average gradient close
to the GF-3 radar image, it still has a significant reduction
compared to GF-1 MSS. Multiplicative transform has the
smallest average gradient which is most blurred image with
indistinguishable details.

Fig.3(e) shows the spectral distortion of each fusion method.
Since they are all referenced to GF-1 MSS which spectral



distortion is 0. The closer to the center of the triangle, the smaller
spectral distortion. PC has the smallest spectral distortion,
followed by GS and HSV. Brovey and Multiplicative have the
most severe distortions.

The correlation coefficient is referenced to GF-1 MSS which
correlation coefficient is 1. Therefore, the larger area the delta
covered in the Fig.3(f), the stronger the ability to maintain the

spectrum [9]. PC transform has the highest correlation
coefficient, which is close to 0.8 in the Red and NIR bands and
slightly lower in the Green band. The correlation coefficient of
other fusion results is less than 0.5 except for GS in the NIR
band which correlation coefficient is 0.53. Brovey is the lowest
one with the weakest ability of keeping the spectrum
characteristic.

TABLE II. SORTING OF FUSION METHODS IN DIFFERENT INDEXES
Indexes Area of the delta sorted in descending order
Mean HSV GS PC Multiplicative Brovey
Variance HSV GS PC Brovey Multiplicative
Information Entropy GS HSV PC Brovey Multiplicative
Average Gradient HSV GS PC Brovey Multiplicative
Spectral distortion Brovey Multiplicative HSV GS PC
Correlation coefficient PC GS HSV Multiplicative Brovey

V. CONCLUSION

At present, the fusion technology based on panchromatic and
multispectral images is very mature, but fusion of radar data and
multispectral is rarely applied in practical application. In this
paper, five common fusion methods and evaluation were applied
to merge GF-3 and GF-1MSS with the following conclusions:

A. Qualitative evaluation

The visual observation shows that the fusion results of HSV
and GS transforms are better, and the texture of buildings in
residential areas is clear. Although the color distortion of PC
transform is serious, the vegetation information such as crops
and trees has significantly enhanced after PC; The effects of
Brovey and Multiplicative transforms are not good enough, for
the fusion results are gray and dark, and the details of the ground
objects are not clear.

B. Quantitative evaluation

The area of each delta in the radar chart indirectly reflects
the evaluation index. Therefore, the area of delta is calculated
and sorted in descending order as shown in TABLE II. The
quantitative evaluation verifies the visual observation: HSV
transform has the highest mean, variance and average gradient,
with well-preserved high-frequency information, clear gray
levels and good image clarity. GS transform gets the maximum
information entropy in all methods. The vegetation information
is relatively prominent after PC transform, because of a higher
information entropy in the NIR band. PC transform also has the
smallest spectral distortion, while Brovey and Multiplicative are
ranked behind in distortion. The correlation between PC and
GF-1 MSS is the highest which indicates the best spectral
retention ability. GS and HSV are following behind, but still
under 0.6.

In summary, HSV and GS transforms have the best
performances in overall. PC is recognized as the third, while it
is still remarkable that it has the best ability of spectral retention.
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And the specialty in NIR band makes it more conducive for
extraction of vegetation. Brovey and Multiplicative transforms
have the worst fusion effect. In the future, more multispectral
data sources should be adopted to explore the differences on the
fusion between different multispectral data and radar data.
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Abstract—When using FLAASH model to process a large
number of image data automatically, it is hard to determine
model parameters’ values exactly. To solve this problem, this
paper analyze the sensitivity of mainly 8 model parameters.
The simulated GF2 satellite multispectral dataset based on
four type land cover was used as input data. These parameters
are assumed to be independent and irrelevant, therefore
sensitivity analysis is performed using the local analysis
method. Variation coefficient was introduced into this paper to
quantitatively analyze the effect of these parameters on
FLAASH model. Atmosphere model, ground elevation, view
zenith angle, and visibility value have dramatic effect on
FLAASH model’s accuracy, the aerosol model and water
column multiplier have little effect on the model. In addition,
frequency resolution and view azimuth angle have no effect on
the model in all four bands and four land types.

Keywords—atmospheric correction;
analysis; surface reflectivity.

FLAASH; sensitivity

I.  INTRODUCTION

Atmospheric absorption and scattering are important
reasons that cause the radiation distortion of the remote
sensing image. Atmospheric correctionis the necessary
process to removing the effects of the atmosphere [1].
FLAASH is a MODTRAN4-based atmospheric correction
model, it derives the surface reflectivity by lookup tables
based on MODTRAN simulation data [2]. With high
precision, simplicity of use, and applicability, it has been
widely used to correct the hyperspectral image and
multispectral image. FLAASH model has more than 30
parameters, except for some parameters that we can
determine the input value easily, such as latitude and
longitude of the image, imaging time, spectral response
function, etc. There are remaining mainly 8 parameters that
need to be set according to the actual situation, and it is hard
to determine these parameters values exactly when
processing a large number of image data automatically [3]. If
these parameters in the model have little effect on the output
of the FLASSH model, we actually do not need to spend so
much effort on how to set their values precisely [4]. So
sensitivity analysis about FLAASH model parameters seems
particularly important, that could provide a reference for
identifying the key parameters and how to set their values.
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II. METHODOLOGY

A.  Analysis method

This paper discussed a total of eight parameters, which
are atmosphere model, aerosol model, frequency resolution,
ground elevation, view azimuth angle, view zenith angle,
visibility value, and water column multiplier. The default
values of these parameters are SAS model, rural model,
15cm™!, 1km, 0°, 180°, 40km and 1, respectively. If we
consider the correlation between each parameter, the
situation will be very complicated. Therefore, this paper
assumes that these parameters are independent and irrelevant.
Sensitivity analysis of these parameters is performed using
the local sensitivity analysis method [5].

This paper changes one parameter value within a
reasonable range and make other parameters keep unchanged
simultaneously each time. By estimating the change degree
of the surface reflectivity under different parameters,
sensitivity of these parameters have been analyzed.

The atmosphere model and aerosol model include seven
models and four modes respectively; the frequency
resolution varies from Sum to 15um in steps of Sum; the
ground elevation varies as 0.15km, 0.3km, 0.5km, 1.0km,
1.5km, 2.0km respectively; the view azimuth angle varies
from 0° to 180° in steps of 30°; the view zenith angle varies
from 150° to 180° in steps of 5°; the visibility value varies
from 20km to 45km in steps of 5km; the water column
multiplier varies from 0.25 to 1.75 in steps of 0.25.

B.  Datasets

In order to quantitatively analyze the results, this paper
simulates GF2 satellite multispectral dataset based on four
types land cover [6], which are vegetation, water, soil and
buildings. GF2 multispectral data has four bands, including
blue, green, red and the near-infrared band respectively.

The latitude and longitude of the simulation data are
40°N and 105°E respectively, the imaging date is November
14, 2016, time is 3:30 am, and rows and columns are both
1000, image resolution is 3.2m. The spectral response
function of GF2 data in four bands is shown in the Fig. 1.
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Fig. 1. The spectral response function of GF2 data.

C. variation coefficient

In order to more intuitively view the effect of each
parameters on the FLAASH model, this paper uses the
variation coefficient to quantify the sensitivity of each
parameter [7], Calculation formula of which is

C=o0o/u (D).

In this equation, C is variation coefficient, x and o are
respectively average value and standard deviation of the
surface reflectivity under different values of each parameter.
The standard deviation x could be calculated as

o= ,/%i(x,—u)z .

In this equation, x and o are respectively average value
and standard deviation. Xi is the i-th reflectivity value, N is
the number of reflectivity values.

Take the atmosphere model as an example, it has six
selectable values. Correspondingly, the FLAASH model has
six output reflectivity results. First, the averages and standard
deviation of the six reflectivity results would be calculated,
then divide the standard deviation by the average and get the
variation coefficient in four bands, by which judging the
sensitivity of the atmosphere model for the FLAASH model.
Generally when the variation coefficient is greater than 0.02,
it indicates that this parameter would have a large effect on
the model.

III. RESULTS

In order to better analyze the effect of each parameter
on the model, this paper makes a statistical analysis in the all
four bands of GF2 data. Variation coefficients of each
parameter in four bands and four land types have been
calculated, By which judging the sensitivity of each
parameter in different bands and land types and then
providing some help for different application requirements.

A. atmosphere model

The atmosphere model has six selectable values, which
are entered into the FLAASH model and we get the surface
reflectivity results. Fig. 2 shows the surface reflectivity in
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four GF2 bands under different values of atmosphere model
and four land types: (a) vegetation, (b) water, (c) soil, (d)
buildings.

Reflcetivity
Reflectivity

Reflectivity

Reflcctivity

Fig. 2. The surface reflectivity in four GF2 bands under different values of
atmosphere model and four land types: (a) vegetation, (b) water, (c)

soil, (d) buildings.
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It can be seen that atmosphere model could affect
reflectivity in the near-infrared band for all four land types,
in the blue and green band only for water and buildings land
type, in the red band only for buildings land type. There are
no significant variations in reflectivity under other conditions.

The variation coefficients of the atmosphere model in
four GF2 bands for four land types are shown in the Table 1.
The results which the coefficient of variations show are
consistent with Fig. 2.

TABLE 1. THE VARIATION COEFFICIENTS OF THE ATMOSPHERE MODEL

Blue Green Red NIR
Vegetation  0.01561  0.01599  0.00476  0.03083
Water 0.01993  0.02617 0.01719 0.01872
Soil 0.00303  0.00918  0.00440 0.02986
Buildings  0.13054  0.07413  0.02164 0.02619

B. aerosol model

The aerosol model has four selectable values. Fig. 3
shows the surface reflectivity in four GF2 bands under
different values of aerosol model and four land types.

We can see that aerosol model could only affect
reflectivity in the blue band for buildings land type, and in
the near-infrared band for water land type. There are no
significant variations in reflectivity under other conditions.
Therefore, when setting this parameter, if we do not know
the specific value, we could set approximately, that would
hardly affect the accuracy of the FLAASH model.



2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications

Reflectivity
Reflectivit

Reflectivit
Reflectivity
-,

Channels

Channels

Fig. 3. The surface reflectivity under different values of aerosol model.

The variation coefficients of the aerosol model in four
GF2 bands for four land types are shown in the Table 2. The
variation coefficients in the blue band for buildings land type,
and in the near-infrared band for water land type are greater
than 0.02, others are less than 0.02, which show consistent
results with Fig. 3.

TABLE 2. THE VARIATION COEFFICIENTS OF THE AEROSOL MODEL

Blue Green Red NIR
Vegetation  0.00065  0.00331  0.00310 0.00148
Water 0.00443  0.00130  0.00093  0.03082
Soil 0.00613  0.00551 0.00302 0.00361
Buildings  0.06278  0.0166  0.00161  0.00753

C. frequency resolution

The frequency resolution has three selectable values.
Fig. 4 shows the surface reflectivity in four bands under
different values of frequency resolution and four land types.

)

Reflectivity
Reflectivity

Channels

Reflectivity
Reflectivity

Fig. 4. The surface reflectivity in four GF2 bands under different values of
frequency resolution and four land types: (a) vegetation, (b) water, (c)
soil, (d) buildings.
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There are almost no variations in reflectivity in four
bands and four land types, showing the frequency resolution
has no effect on the accuracy of the FLAASH model.

Table 3 show the variation coefficients of the frequency
resolution, which all less than 0.001.

TABLE 3. THE VARIATION COEFFICIENTS OF THE FREQUENCY RESOLUTION

Blue Green Red NIR
Vegetation ~ 0.00000  0.00000  0.00029  0.00082
Water 0.00000 0.00014 0.00086  0.00086
Soil 0.00005  0.00004 0.00026 0.00084
Buildings  0.00000  0.00000  0.00023  0.00092

D. ground elevation

The ground elevation has six selectable values. Fig. 5
shows the surface reflectivity in four bands under different

values of ground elevation and four land types.
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Fig. 5. The surface reflectivity under different values of ground elevation.

Ground elevation has dramatic effect on reflectivity in
all four band for water land type, in the blue, green, red band
for buildings land type, in the near-infrared band for soil land
type. There are no significant variations in reflectivity under
other conditions.

The variation coefficients of the ground elevation are
shown in the Table 4, range of which are 0.00281 to 0.52329,
showing that ground elevation has obviously different effect
on the reflectivity for four land types.

TABLE 4. THE VARIATION COEFFICIENTS OF THE GROUND ELEVATION

Blue Green Red NIR
Vegetation  0.05845 0.01671 0.01079  0.02202
Water 0.07941  0.04555 0.04587 0.03081
Soil 0.01052  0.00281 0.00915  0.02001
Buildings  0.52329  0.17137  0.05291  0.00639

E. view azimuth angle

The view azimuth angle has six selectable values. The
surface reflectivity are shown in the Fig. 6.
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Like frequency resolution, there are no variations in
reflectivity in four bands and four land types. The setting of
the view azimuth angle would not substantially affect the
accuracy of the FLAASH model.
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Fig. 6. The surface reflectivity under different values of view azimuth
angle.

The variation coefficients of the ground elevation are
shown in the Table 5, which are all 0.

TABLE 5. THE VARIATION COEFFICIENTS OF THE VIEW AZIMUTH ANGLE

Blue Green Red NIR
Vegetation  0.00000 0.00000 0.00000 0.00000
Water 0.00000 0.00000 0.00000 0.00000
Soil 0.00000 0.00000 0.00000 0.00000
Buildings  0.00000 0.00000 0.00000 0.00000

F. view zenith angle

The view zenith angle varies from 150° to 180° in steps
of 5°. The surface reflectivity are shown in the Fig. 7.

() (b
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Fig. 7. The surface reflectivity under different values of view zenith angle.
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Obviously different from view azimuth angle, the view
zenith angle has dramatic effect on reflectivity for water, soil
and buildings land types in all four bands, for vegetation land
type in blue, green and red bands. The variation coefficients
of the ground elevation are shown in the Table 6, most of
which are greater than 0.02.

TABLE 6. THE VARIATION COEFFICIENTS OF THE VIEW ZENITH ANGLE

Blue Green Red NIR
Vegetation  0.07484  0.03924  0.04131  0.00120
Water 0.09835 0.07976  0.10362  0.12131
Soil 0.02505 0.01486 0.00966  0.00751
Buildings  0.72842  0.28234  0.12253  0.03727

G. visibility value

The visibility value varies from 20km to 45km in steps
of Skm. The surface reflectivity are shown in the Fig. 8.

......

Channels Channels

Fig. 8. The surface reflectivity under different values of visibility value.

The Fig.8 shows that the visibility value has a very
significant effect on reflectivity in all four bands for four
land types, meaning that it has strong sensitivity for
FLAASH model. Table 7 shows the variation coefficients of
the visibility value, the minimum of which is 0.01378, and
the maximum even exceeds 1.

TABLE 7. THE VARIATION COEFFICIENTS OF THE VISIBILITY VALUE

Blue Green Red NIR
Vegetation  0.05502 0.01756 0.02434 0.02394
Water 0.07193 0.06078 0.09478 0.14551
Soil 0.01378 0.01776 0.01998 0.01460
Buildings  1.14651 0.34971 0.12619 0.01984

H. water column multiplier

The water column multiplier varies from 0.25 to 1.75 in
steps of 0.25. Fig. 9 shows the surface reflectivity in four
GF2 bands under different values of water column multiplier
and four land types.
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Fig. 9. The surface reflectivity in four GF2 bands under different values of
water column multiplier and four land types: (a) vegetation, (b) water,
(c) soil, (d) buildings..

The Figure shows that the water column multiplier has a
very significant effect on reflectivity only in NIR band for
four land types, nor in other bands.

Table 8 shows the variation coefficients of the water
column multiplier, which in NIR band are all greater than
0.02, in other bands are less than 0.01.

TABLE 8. THE VARIATION COEFFICIENTS OF THE WATER COLUMN

MULTIPLIER
Blue Green Red NIR
Vegetation  0.00107  0.00332  0.00780  0.02373
Water 0.00116  0.00366  0.00874  0.02802
Soil 0.00095 0.00312 0.00728 0.02413
Buildings  0.00193  0.00439 0.00914  0.02535

IV. CONCLUSIONS

This paper adopts the local sensitivity analysis method
to analyze the influences of FLAASH model parameters’
changes on the surface reflectivity which is FLAASH
model’s output. A total of eight adjustable parameters were
considered, namely atmosphere model, aerosol model,
frequency resolution, ground elevation, view azimuth angle,
view zenith angle, visibility value, water column multiplier.

In order to more intuitively view the effect of each
parameters on the FLAASH model, this paper uses the
variation coefficient to quantify the sensitivity of each
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parameter, and makes a statistical analysis in the all four
bands of simulated GF2 data for four land types.

The analysis results indicate that the atmosphere model,
ground elevation, view zenith angle, visibility value have
dramatic effect on FLAASH model’s accuracy, these
parameters require precise values to ensure the accuracy of
FLAASH model. Furthermore, the aerosol model and water
column multiplier have little effect on the FLAASH model’s
output. In addition, frequency resolution and view azimuth
angle have no effect on FLAASH model in all four bands
and four land types, the values of the two parameters could
be set approximately as inputs.

This paper provides a good reference for how to set
parameters’ values when using FLAASH model to process a
large number of image data automatically. However, the
combination of FLAASH model parameters does not be
provided, Because the specific value of each parameter
should be set according to the actual situation. Some could
be set approximately, and others need to be precise.
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